• Title/Summary/Keyword: pore-water

Search Result 1,895, Processing Time 0.024 seconds

Preparation of Pore-filled Ion-exchange Membranes using Poly(vinylbenzyl ammoninum salt) (Poly(vinylbenzyl ammonium salt)를 이용한 Pore-filled 이온교환막의 제조)

  • 변홍식
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.109-115
    • /
    • 2001
  • Pore-filled ion-exchange membranes in which polypropylene(PP) microporous membrane was used as a nascent membrane were prepared by an in-situ cross-linking technique. Poly(vinylbenzyl chloride)(PVBCI) reacted with piperazine(PIP) or 1,4-diaminobicyclo[2,2,2]octane(DABCO) in a di-methylforamide(DMF) solution was filled in the pores of the microporous base membrane. After gellation the remaining chloromethyl groups were, then reacted with an amine such as trimethylamine to form positively charged, ammonium site. This will produce the pore-filled anion-exchange membrane. It was shown that this simple 2 step procedure gave dimensionally stable, pore-filled membranes in which the MG of polymer gel and degree of cross-linking could be easily controlled by the concentration of PVBCI and cross-linker in the starting DMF solution. Specially, high water permeability (7.8 kg/$m^2$hr, host membrane: PP3, MG: 73%, degree of cross-linking: 10%, crosslinker: PIP) at ultra low pressure(100 kPa) indicates the produced pore-filled membranes is usable as a water softening membrane.

  • PDF

Preparation and Characterization of Chemically Stable PVDF-HFP Asymmetric Microfiltration (MF) Membranes

  • Lee, Yeon-Ee;JeGal, Jong-Geon
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • Chemically stable Polyvinylidene fluoride-hexa-fluoropropane (PVDF-HFP) copolymer asymmetric membranes were prepared by the conventional phase inversion process, using Dimethyacetamide (DMAc) as a solvent and water as a non-solvent. To control the pore size and porosity of the PVDF-HFP membranes, tetra-ethoxysilane (TEOS) was used as a pore-forming agent. The prepared membranes were characterized, using several analytical methods such as Fourier Transform Infrared spectroscopy (FTIR), Thermo-gravimetric analyzer (TGA), Field Emission Scanning Electronic Microscopy (FESEM). TEOS turned out to increase porosity and make homogeneous pores on the membranes. Depending on the composition of the dope solutions, the pore size was ranged from 0.1 to 1.0 ${\mu}m$. The flux of the PVDF-HFP membranes prepared by using TEOS as a pore forming agent was increased substantially without much decrease in the rejection. When 15 wt% PVDF-HFP solution was blended with 13 wt% TEOS solution at composition ratio of 70/30 in wt%, the water flux at 2 bars was about 2 $m^3/m^2day$.

A Study on the Pore Structure of Hardened Alumina Cement Pste by Water Vapor Sorption ($H_2O$ 증착법에 의한 알루미나 시멘트 경화체의 기공구조 연구)

  • 임용무;장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.273-278
    • /
    • 1993
  • Using water vapor (de)sorption isotherm, pore structure analyses were performed for hardened cement pastes by a combination of the "MP-method" for the micropores and the "corrected modelless method" for the wide pores. This work was carried out to investigate the pore structure and to understand the microstructural basis of alumina cement developing much higher strength than Portland cement. Alumina cement shows extremely low microporosity and its wide pores are also composed mainlyof pores with very small radii. And the pore structure analysis results are consistent with the high strength property of alumina cement.y of alumina cement.

  • PDF

Change of pore structure and uniaxial compressive strength of sandstone under electrochemical coupling

  • Chai, Zhaoyun;Bai, Jinbo;Sun, Yaohui
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.157-164
    • /
    • 2019
  • The effect of electrochemical modification of the physical and mechanical properties of sandstone from Paleozoic coal measure strata was investigated by means of liquid nitrogen physical adsorption, X-ray diffraction and uniaxial compressive strength (UCS) tests using purified water, 1 mol/L NaCl, 1 mol/L $CaCl_2$ and 1 mol/L $AlCl_3$ aqueous solution as electrolytes. Electrochemical corrosion of electrodes and wire leads occurred mainly in the anodic zone. After electrochemical modification, pore morphology showed little change in distribution, decrease in total pore specific surface area and volume, and increased average pore diameter. The total pore specific surface area in the anodic zone was greater than in the cathodic zone, but total pore volume was less. Mineralogical composition was unchanged by the modification. Changes in UCS were caused by a number of factors, including corrosion, weakening by aqueous solutions, and electrochemical cementation, and electrochemical cementation stronger than corrosion and weakening by aqueous solutions.

Mass transfer in the filtration membrane covering from macroscale, multiscale to nanoscale

  • Lin, Wei;Li, Jian;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.167-172
    • /
    • 2022
  • The analytical results are presented for the mass transfer in a cylindrical pore covering from the macroscale, multiscale to nanoscale owing to the variation of the inner diameter of the pore. When the thickness hbf of the physically adsorbed layer potentially fully formed on the pore wall is comparable to but less than the inner radius R0 of the pore, the multiscale flow occurs consisting of both the nanoscale non-continuum adsorbed layer flow and the macroscopic continuum liquid flow; When R0 ≤ hbf, the flow in the whole pore is essentially non-continuum; When R0 is far greater than hbf, the flow in the whole pore can be considered as macroscopic and continuum and the adsorbed layer effect is negligible.

A Study on Soil-Water Characteristic Curves of Reclaimed Soil and Weathered Granite Soil (준설매립토 및 화강풍화토의 흙-수분 특성곡선에 관한 연구)

  • 신은철;이학주;김환준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.743-750
    • /
    • 2002
  • Unsaturated soil has a possibility to induce a negative pore water pressure. Until now, saturated soil is mainly focused on the research of soil mechanics. Recently, soil mechanics is researched on two major parts such as saturated and unsaturated soil mechanics. Negative pore water pressure has a non-linear relationship with the water content changes. Soil-water characteristic curves of soil in Korea are not determined. There is no proper characteristic value such as air-entry value and residual water content. In this study, the characteristic curves of reclaimed soil, sand, and weathered granite soil were determined by laboratory tests. Air-entry value and residual water content were determined by fitting methods. Soil-water characteristic curves were estimated based on the particle-size distribution and compared with the laboratory test results. The results of soil-water characteristic curves estimation indicated that Fredlund and Wilson's model is excellent for sand and weathered granite soil. Arya and Paris's model is excellent for reclaimed soil.

  • PDF

Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications (시공조건이 시멘트계 고화토의 투수계수에 미치는 영향)

  • 정문경;김강석;우제윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.235-245
    • /
    • 2019
  • This paper presents a novel methodology for face stability assessment of rock tunnels under water table by combining the kinematical approach of limit analysis and numerical simulation. The tunnels considered in this paper are excavated in fractured rock masses characterized by the Hoek-Brown failure criterion. In terms of natural rock deposition, a more convincing case of depth-dependent mi, GSI, D and ${\sigma}_c$ is taken into account by proposing the horizontally layered discretization technique, which enables us to generate the failure surface of tunnel face point by point. The vertical distance between any two adjacent points is fixed, which is beneficial to deal with stability problems involving depth-dependent rock parameters. The pore water pressure is numerically computed by means of 3D steady-state flow analyses. Accordingly, the pore water pressure for each discretized point on the failure surface is obtained by interpolation. The parametric analysis is performed to show the influence of depth-dependent parameters of $m_i$, GSI, D, ${\sigma}_c$ and the variation of water table elevation on tunnel face stability. Finally, several design charts for an undisturbed tunnel are presented for quick calculations of critical support pressures against face failure.

Change of Chemical Properties and Nutrient Dynamic in Pore Water of Upland Soil During Flooding (담수에 의한 밭 토양 공극수의 화학적 특성 및 영양분 농도 변화)

  • Kim, Jae-Gon;Chon, Chul-Min;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2008
  • Understanding the chemical characteristics of sediments and the nutrient diffusion from sediments to the water body is important in the management of surface water quality. Changes in chemical properties and nutrient concentration of a submerged soil were monitored for 6 months using a microcosm with the thickness of 30cm for upland soil and 15cm of water thickness above the soil. The soil color changed from yellowish red to grey and an oxygenated layer was formed on the soil surface after 5 week flooding. The redox potential and the pH of the pore water in the microcosm decreased during the flooding. The nitrate concentration of the surface water was continuously increased up to $8\;mg\;l^{-1}$ but its phosphate concentration decreased from $2\;mg\;l^{-1}$ to $0.1\;mg\;l^{-1}$ during flooding. However, the concentrations of $NH_4^+$, $PO_4^{3-}$, Fe and Mn in the pore water were increased by the flooding during this period. The increased $NO_3^-$ in the surface water was due to the migration of $NH_4^+$ formed in the soil column and the oxidation to $NO_3^-$ in the surface water. The increased phosphate concentration in the pore water was due to the reductive dissolution of Fe-oxide and Mn-oxide, which scavenged phosphate from the soil solution. The oxygenated layer played a role blocking the migration of phosphate from the pore water to the water body.

Analysis of the Behavior of Undrained Pore Water Pressure in Saturated Sand by Isotropic Loading Test (포화된 사질토에서 등방재하시험에 의한 비배수 공극수압의 거동분석)

  • Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.43-52
    • /
    • 2005
  • It is known in some literatures that the B value is not equal to unity in saturated soil when effective stress is given, in which the B Value is the ratio of measured excess pore water pressure and isometric loading pressure. In this study the B value was measured on various effective stresses and on various incremental loading stresses in various grain size of specimens with saturated sand. The test results showed that the B value was affected largely by grain size of sand in specimen and the amount of effective stress. There was the semi-logarithmic relationship between B value and effective stress, and also there was the linear relationship between the gradient of the former semi-logarithmic relationship and grain size of specimen.