• Title/Summary/Keyword: pore saturation

Search Result 112, Processing Time 0.016 seconds

Effects of the Double Cropping System on Wheat Quality and Soil Properties (밀-하작물 작부체계가 밀 품질 및 토양에 미치는 영향)

  • Jisu Choi;Seong Hwan Oh;Seo Young Oh;Tae Hee Kim;Sung Hoon Kim;Hyeonjin Park;Jin-Kyung Cha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.335-342
    • /
    • 2023
  • To achieve self-sufficiency in domestic wheat (Triticum aestivum L.), an increase in high-quality wheat production is essential. Given Korea's limited land area, the utilization of cropping systems is imperative. Wheat is compatible with a double cropping system along with rice, soybeans, and corn. Data on alterations in wheat quality following summer crop cultivation is required. This study investigated the impact of cultivating preceding crops such as rice, soybeans, and corn in a wheat cropping system. The analysis focused on the influence of these preceding crops on wheat growth, quality, and soil characteristics, elucidating their interrelationships and impacts. While there were no differences in growth timing and quantity during wheat growth, a significant variance was observed in stem length. Protein content, a key quality attribute of wheat, displayed variations based on the intercropped crops, with the highest increase observed in wheat cultivated after soybeans. Soil moisture content also exhibited variations depending on the intercropping system. The wheat-rice intercropping system, which requires soil moisture retention, resulted in greater pore space saturation in comparison to other systems. Moreover, soil chemical properties, specifically phosphorus and calcium levels, were influenced by intercropping. The highest reduction in soil phosphorus content occurred with soybean cultivation. These findings suggest that intercropping wheat with soybeans can potentially enhance wheat quality in domestic varieties.

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF