• Title/Summary/Keyword: pore morphology

Search Result 292, Processing Time 0.028 seconds

Preparation and characterization of PVDF/alkali-treated-PVDF blend membranes

  • Liu, Q.F.;Li, F.Z.;Guo, Y.Q.;Dong, Y.L.;Liu, J.Y.;Shao, H.B.;Fu, Z.M.
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.417-431
    • /
    • 2016
  • Poly(vinylidene fluoride) (PVDF) powder was treated with aqueous sodium hydroxide to obtain partially defluorinated fluoropolymers with expected properties such as improving hydrophilicity and fouling resistance. Raman spectrum and FT-IR results confirmed the existence of conjugated carbon double bonds after alkaline treatment. As the concentration increased, the degree of defluorination increased. The morphology and structure of membranes were examined. The permeation performance was investigated. The results showed that membrane's hydrophilicity increased with increase of the percentage of alkaline treated PVDF powder. Moreover, in terms of the water contact angle, it decreased from $92^{\circ}$ to a minimum of $68^{\circ}$; while water up take increased from 128 to 138%. Fluxof pure water and the cleaning efficiency increased with the increase of alkaline treated PVDF powder. The fouling potential also decreased with the increase of the percentage of alkaline treated PVDF powder. The reason that makes blending PVDF show different characteristics because of partial defluorination, which led the formation of conjugated C = C bonds and the inclusion of oxygen functionalities. The polyene structure followed by hydroxide attack to yield hydroxyl and carbonyl groups. Therefore, the hydrophilicity of blending membrane was improved. The SEM and porosity measurements showed that no obvious variations of the pore dimensions and structures for blend membranes were observed. Mechanical tests suggest that the high content of the alkaline treated PVDF result in membranes with less tolerance of tensile stress and higher brittleness. TGA results exhibited that the blend of alkaline treated PVDF did not change membrane thermal stability.

Fabrication of Porous β-TCP Bone Graft Substitutes Using PMMA Powder and their Biocompatibility Study (PMMA를 이용한 다공질 β-TCP 골충진제 제조 및 생체적합성 평가)

  • Song, Ho-Yeon;Youn, Min-Ho;Kim, Young-Hee;Min, Young-Ki;Yang, Hun-Mo;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.318-322
    • /
    • 2007
  • Porous ${\beta}-tricalcium$ phosphate $({\beta}-TCP)$ bioceramic was fabricated by pressureless sintering using commercial HAp and different volume percentages of PMMA powders (30-60 vol.%). The range of spherical pore size was about $200-250\;{\mu}m$ in diameter. By increasing the PMMA content, the number of pores and their morphology were dramatically changed as well as decreased the material properties. In case of using 60 vol.% PMMA content, network-type pores were found, due to the necking of the PMMA powders. The values of relative density, elastic modulus, bending strength and hardness of the 60 vol.% PMMA content sample, sintered at $1500^{\circ}C$, were about 46%, 22.2 GPa, 5MPa and 182 Hv respectively. Human osteoblast-like MG-63 cells and osteoclast-like Raw 264.7 cells were well grown and fully covered all of the porous ${\beta}-TCP$ bodies sintered at $1500^{\circ}C$.

Influence of the Starting Materials and Sintering Conditions on Composition of a Macroporous Adsorbent as Permeable Reactive Barrier (초기 소재와 소성조건이 투수반응벽체인 대공극흡착제 조상에 미치는 영향)

  • Chung, Doug-Young;Lee, Bong-Han;Jung, Jae-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • In this investigation, we observed surface morphology and porosity of a macroporous adsorbent made of Na-bentonite and Ca-bentonite as structure formation materials and grounded waste paper as macropore forming material for the development of a permeable reactive barrier to remove heavy metals in groundwater. Therefore, we selected minerals having higher cation exchange capacity among 2:1 clay minerals and other industrial minerals because sintering can significantly influence cation exchange capacity, resulting in drastic decrease in removal of heavy metals. The results showed that the increasing sintering temperature drastically decreased CEC by less than 10 % of the indigenous CEC carried by the selected minerals. One axial compressibility test results showed that the highest value was obtained from 5% newspaper waste pulp for both structure formation materials of Na-bentonite and Ca-bentonite although there were not much difference in bulk density among treatments. The pore formation influenced by sintering temperature and period contributes removal of heavy metals passing through the sintered macroporous media having different water retention capacity.

Effect of Surface Modification by Solvent Treatment on Morphology and Radionuclide Pick-up Efficiency of Polysulfone Film (폴리설폰 필름의 형상 및 방사성 오염물 채취에 있어 용매처리의 효과)

  • 한명진;이근우;서범경;박진호;남석태
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.126-131
    • /
    • 2004
  • The surface of dense polysulfane films was modified through solvent treatment. The modification process consisted of dipping a film for one second in dimethylformamide and then immersing it Into a nonsolvent bath. After being solidified, the original transparent film transformed into an opaque white one, which is due to the light scattering on pores newly developed on the surface. The surface roughness entailing the pore formation was more explicit on a film coagulated by water as nonsolvent than on a film coagulated by isopropanol. The surface-modified films show the better pick-up efficiency than a conventional filter paper on the detaching of radioactive contaminants on the contaminated area. The pick-up efficiency of the film prepared by the water immersion process was superior to that of the film prepared in the isopropanol bath, which was consistent with the surface roughness result. The surface-modified films kept the dense inner structure, playing a major role preventing a possible secondary contamination during the pick-up process.

Pore Structure and Separation Properties of Thin Film Composite Forward Osmosis Membrane with Different Support Structures (지지층 구조가 다른 복합 정삼투막의 기공구조와 분리 특성)

  • Ahn, Soo-Hyun;Kim, In-Chul;Song, Doo-Hyun;Jegal, Jonggeon;Kwon, Young-Nam;Rhee, Hee-Woo
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.251-256
    • /
    • 2013
  • In this study, acetylated methyl cellulose (AMC) was successfully used as a support layer of thin film composite (TFC) forward osmosis (FO) membrane. A selective polyamide active layer, interfacially polymerized, was coated on top of various substrate layers. The structure and performance of the TFC FO membrane based on the AMC substrate were compared with those of TFC FO membranes with different polymeric support layers. The experimental results showed that the AMC FO membrane performance was better than other FO membranes due to its characteristic morphology and lower back diffusion rate of salts.

Electrochemical Etching of Silicon in Porous Silicon Layer Transfer Process for Thin Film Solar Cell Fabrication (초박형 태양전지의 Porous Si Layer Transfer 기술 적용을 위한 전기화학적 실리콘 에칭)

  • Lee, Ju-Young;Han, Wone-Keun;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.55-60
    • /
    • 2009
  • Porous silicon film is fabricated by electrochemical etching in a chemical mixture of HF and ethanol. Effects of Si type, Si resistivity, ultrasonic frequency, current density and etching time on surface morphology of PS film were studied. Electrochemical etching in ultrasonic bath promotes the uniformity of porous layer of Si. Frequency of ultrasonic was increased from 40 kHz to 130 kHz to obtain uniform pores on the Si surface. When current density was higher, the sizes of pores were larger. The new etching cell using back contact metal and current shield help to overcome nonhomogeneity and current crowding effect, and then leads to fabricate uniform pores on the Si surface. The distribution of pore size shows no notable tendency with etching time.

  • PDF

Changes in Ice Dendrite Size during Freezing Process in Gelatin Matrix as a Model Food System (모델 식품으로 젤라틴 매트릭스에서 동결과정에 따른 얼음 결정체 변화)

  • Min, Sang-Gi;Hong, Geun-Pyo;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.312-318
    • /
    • 2008
  • The objective of this study was to investigate the changes in ice dendrite size during freezing process in gelatin matrix as a model food system in order to provide mathematical relation between freezing condition and ice dendrite size. Gelatin gel as a model matrix was frozen in unidirectional Neumann's type of heat transfer. The thermograms' analysis allowed to determine the freezing temperature of the sample, the position of the freezing front versus time, and thus, freezing front rate. The morphology of ice dendrites was observed by scanning electron microscopy after freeze-drying. We observed that the means size of ice dendrite increased with the distance to the cooling plate; however, it decreased with the cooling rate and the cooling temperature. In addition, the shorter durations of the freeze-drying process was shorter decreeing the decreased the freezing front rate, resulted in their resulting in a larger pore size of the ice dendrite pores for the sublimation channel of that operate as water vapor sublimation channels. From these results, we could derive a linear regression as an empirical mathematical model equation between the ice dendrite size and the inverse of freezing front rate.

Electrochemical Behavior of Pt-Ru Catalysts on Zeolite-templated Carbon Supports for Direct Methanol Fuel Cells

  • Lim, Tae-Jin;Lee, Seul-Yi;Yoo, Yoon-Jong;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3576-3582
    • /
    • 2014
  • Zeolite-templated carbons (ZTCs), which have high specific surface area, were prepared by a conventional templating method using microporous zeolite-Y for catalyst supports in direct methanol fuel cells. The ZTCs were synthesized at different temperatures to investigate the characteristics of the surface produced and their electrochemical properties. Thereafter, Pt-Ru was deposited at different carbonization temperatures by a chemical reduction method. The crystalline and structural features were investigated using X-ray diffraction and scanning electron microscopy. The textural properties of the ZTCs were investigated by analyzing $N_2$/77 K adsorption isotherms using the Brunauer-Emmett-Teller equation, while the micro- and meso-pore size distributions were analyzed using the Barrett-Joyner-Halenda and Harvarth-Kawazoe methods, respectively. The surface morphology was characterized using transmission electron microscopy and inductively coupled plasma-mass spectrometry. The electrochemical properties of the Pt-Ru/ZTCs catalysts were also analyzed by cyclic voltammetry measurements. From the results, the ZTCs carbonized at $900^{\circ}C$ show the highest specific surface areas. In addition, ZTC900-PR led to uniform dispersion of Pt-Ru on the ZTCs, which enhanced the electro-catalytic activity of the Pt-Ru catalysts. The particle size of ZTC900-PR catalyst is about 3.4 nm, also peak current density from the CV plot is $12.5mA/cm^2$. Therefore, electro-catalytic activity of the ZTC900-PR catalyst is higher than those of ZTC1000-PR catalyst.

Characteristics of Two-Step Plasma-Assisted Boronizing Process in an Atmosphere of BCl3-H2-Ar (BCl3-H2-Ar 분위기를 이용한 2단계 플라즈마 보로나이징 특성)

  • Nam, Kee-Seok;Lee, Gu-Hyun;Shin, Pyung-Woo;Song, Yo-Seung;Kim, Bae-Yeon;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.358-361
    • /
    • 2006
  • A two-step plasma-assisted boronizing process was carried out on the AISI 1045 steel substrate to reduce the pore density introduced by a conventional single plasma boronizing process. The specimens were plasma boronized for 1 h at $650^{\circ}C$ and subsequently far 7 h at $800^{\circ}C$ in an atmosphere of $BCl_3-H_2-Ar$. The boride layer thickness was parabolic in boronizing time, a high HV reading of 1540 was found up to the boride layer thickness of $25{\mu}m$. It was found that the morphology of the boride layer prepared by the two-step boronizing process was changed from a columnar to a tooth-like structure and the pores in the borided steel were eliminated completely in comparison to those synthesized by the conventional single boronizing process, implying that it is highly applicable for enhancing the dense and compact coating properties of the low-alloy steel.

Preparation of ZnO Thin Film by Electrophoretic Deposition(EPD)

  • Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The electrophoretic deposition(EPD) of ZnO nano-sized colloids is investigated by changing the colloid number concentration, applied force, and deposition time. The change of the colloid size in a suspension was examined by the different colloid number concentrations (N = $3.98{\times}10^{15}$, N = $3.98{\times}10^{14}$, and N = $3.98{\times}10^{13}$) with an increase of the deposition time and applied forces. Deposition behavior was investigated by changing the applied fields (from DC 5 V to 50 V) and the deposition time (5 min to 25 min). The surface microstructures of the as-deposited films were investigated by SEM. The dried films were sintered from $850^{\circ}C$ to $1,050^{\circ}C$ for 2 h and then the microstructures were also explored by SEM. The agglomeration rate was enhanced by increasing the colloid number concentration of colloids. Colloid number concentration in a suspension must be rapidly decreased at higher values of the electric field. ZnO nano-sized colloids had the highest zeta potential value of over -28 mV in methanol. A homogeneous microstructure was obtained at colloid number concentration of N = $3.98{\times}10^{13}$, applied DC field of 5 V/cm and 15 min of deposition time at an electrode distance of 1.5 cm. Under these conditions, the deposited films were sintered at $850^{\circ}C$ and $1,050^{\circ}C$ for 2 h. The results show a typical pore-free surface morphology of a uniform thickness of 400 nm under these experimental conditions.