• Title/Summary/Keyword: porcine embryonic development

Search Result 107, Processing Time 0.249 seconds

Antioxidant effect of ergothioneine on in vitro maturation of porcine oocytes

  • Ji-Young Jeong;Lian Cai;Mirae Kim;Hyerin Choi;Dongjin, Oh;Ali Jawad;Sohee Kim;Haomiao Zheng;Eunsong Lee;Joohyeong Lee;Sang-Hwan, Hyun
    • Journal of Veterinary Science
    • /
    • v.24 no.2
    • /
    • pp.24.1-24.13
    • /
    • 2023
  • Background: Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine. Objectives: This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF). Methods: Each EGT concentration (0, 10, 50, and 100 μM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF. Results: After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 μM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 μM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 μM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group. Conclusions: Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.

Effect of 7,8-Dihydroxyflavone on In Vitro Maturation of Oocytes in Pigs

  • Oh, Seung-Kyu;Malaweera, Don Buddika Oshadi;Ramachandra, Sisitha;Shin, Sang-Tae;Cho, Jong-Ki
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.67-71
    • /
    • 2014
  • In porcine embryo culture, one of reactive oxygen species (ROS) is harmful factors that are made during in vitro culture. To decrease the detrimental effect of ROS on embryo development, superoxide dismutase, catalase and glutathione peroxidase could be used in the embryo culture. Out of these antioxidants, 7,8-dihydroxyflavone (7,8-DHF) was reported its antioxidant effects to prevent the glutamine-triggered apoptosis. Therefore, this study was performed to investigate the most appropriate concentration of 7,8-DHF in porcine embryonic development. For that, 5 different concentration (0, 0.1, 0.5, 1, $2{\mu}m$) of 7,8-DHF was supplemented in the porcine IVM media and then maturation and blastocyst formation rates were compared among 5 groups. In maturation rates of porcine oocytes, significant higher maturation rates was shown in the $1.0{\mu}m$ group compared with another 4 groups ($83.3{\pm}2.1$ vs. $80.7{\pm}1.4$, $79.8{\pm}1.4$, $78.3{\pm}1.2$, $79.4{\pm}1.6$), respectively (P<0.05). In the embryo culture, $1.0{\mu}m$ group also showed the significant higher cleavage rates ($76.8{\pm}3.1$ vs. $62.1{\pm}5.0$, $65.7{\pm}4.0$, $68.6{\pm}3.7$, $64.6{\pm}4.0%$) and blastocyst formation rates - ($39.6{\pm}4.0%$ vs. $28.6{\pm}3.3$, $31.1{\pm}3.9$, $29.3{\pm}2.5$, $39.6{\pm}4.0$, $26.4{\pm}3.2%$), respectively (P<0.05). There was no significant difference among 5 groups in the cell number of blastocyst (P<0.05). In conclusion, supplement of $1.0{\mu}m$ of 7,8-DHF was effective to increase the porcine embryonic development competence as antioxidant to ROS.

Characterization of the porcine Nanog 5'-flanking region

  • Memon, Azra;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.449-456
    • /
    • 2018
  • Objective: Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods: To characterize the porcine Nanog promoter, the 5'-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5'-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results: Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from -99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion: We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.

Effects of Protein Sources and Co-culture on In Vitro Culture of IVF-derived Porcine Embryos (단백질 공급원 및 체세포와의 공배양이 돼지 체외수정란의 체외발달에 미치는 영향)

  • 한선경;구덕본;이규승;황윤식;김정익;이경광;한용만
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.3
    • /
    • pp.289-297
    • /
    • 2000
  • This study was conducted to investigate whether various protein sources and co-culture affect in vitro development of porcine zygotes derived from In vitro maturation/fertilization (IVM/IVF). These results obtained in these experiments are summarized as follows 1. When porcine oocytes matured and fertilized In vitro were cultured in NCSU 23 medium supplemented with various BSA concentrations (0.4, 0.8 and 3.2%), In vitro developmental rates of porcine zygotes to blastocyst stage were 22.9, 18.4 and 14.6%, respectively. High concentration of BSA (3.2%) showed a smaller nuclei number (36.1$\pm$11.8) of blastocysts than 0.4 and 0.8% BSA groups (53.2$\pm$27.4 and 61.2$\pm$22.5, respectively) (P<0.05). This result indicates that high concentration of BSA is detrimental on preimplantation development of IVF-derived porcine embryos. 2. No differences were detected in the developmental rate and mean nuclei number of porcine embryos between 10 and 20% FBS concentrations in culture medium. 3. IVF-derived porcine embryos co-cultured with mouse or porcine embryonic fibroblast cells showed a lower development to the blastocyst stage than those without co-culture system. Consequently, the present study suggests that high concentration of BSA as a protein source in culture medium suppresses development potential of porcine embryos produced In vitro. In addition, co-culture with somatic cells is not effective on in vitro development of IVF-derived porcine embryos to blastocyst stage.

  • PDF

Expression Pattern of Early Transcription Factors in Porcine Oocytes and Embryos

  • Kim, So Yeon;Lin, Tao;Lee, Joo Bin;Lee, Jae Eun;Shin, Hyun Young;Jin, Dong Il
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.123-129
    • /
    • 2019
  • Many transcription factors are involved in directing the growth of porcine oocytes. The localization and expression level of a given transcription factor often differ at each stage of early embryonic growth, which spans from fertilization to the formation of the blastocyst. A hallmark of the blastocyst stage is the separation of the endodermal and mesodermal ectoderm. The embryo's medium and its effects are known to be crucial during early development compared to the other developmental stages, and thus require a lot of caution. Therefore, in many experiments, early development is divided into the quality of oocyte and cumulus cells and used in experiments. We thought that we were also heavily influenced by genetic reasons. Here, we examined the expression patterns of five key transcription factors (CDX2, OCT4, SOX2, NANOG, and E-CADHERIN) during porcine oocyte development whose expression patterns are controversial in the pig to the literature. Antibodies against these transcription factors were used to determine the expression and localization of them during the early development of pig embryos. These results indicate that the expressions of key transcription factors are generally similar in mouse and pig early developing embryos, but NANOG and SOX2 expression appears to show speciesspecific differences between pig and mouse developing embryos. This work helps us better understand how the expression patterns of transcription factors translate into developmental effects and processes, and how the expression and localization of different transcription factors can crucially impact oocyte growth and downstream developmental processes.

Parthenogenetic Activation of Porcine Oocytes and Isolation of Embryonic Stem Cells-like Derived from Parthenogenetic Blastocysts

  • Xu, X.M.;Hua, J.L.;Jia, W.W.;Huang, W.;Yang, C.R.;Dou, Z.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1510-1516
    • /
    • 2007
  • These experiments were carried out to optimize the parameters of electrical activation, methods of parthenogenetic activation and embryo culture in vitro and meanwhile to isolate embryonic stem cells-like (ESCs) derived from porcine parthenogenetic blastocysts (pPBs). These results showed that, as the electric field strength increased from 1.0 to 2.7 kV/cm, the cleavage rate of parthenogenetic embryos increased gradually but the rate of oocyte lysis was significantly increased when using 2.7 kV/cm field strength. The rate of cleavage in 2.2 and 2.7 kV/cm groups was significantly increased in comparison with that of the 1.0 kV/cm group. A voltage field strength of 2.2 kV/cm DC was used to investigate blastocyst development following activation with a single pulse of 30 or $60-{\mu}sec$ pulse duration. The optimum pulse duration was 30-${\mu}sec$, with a blastocyst rate of 20.7%. Multiple pulses were inferior to a single pulse for blastocyst yield (8.0% vs. 29.9) (p<0.05). For porcine oocyte parthenogenetic activation methods, the rates of cleavage (79.0% vs. 59.8%) and blastocysts (19.4% vs. 3.4%) were significantly increased in electrical activation in contrast to chemical activation with ionomycin/6-DMAP (p<0.05). Rates of cleavage and blastocyst formation in NCSU-23 and PZM-3 embryo media were higher than those of G1.3/G2.3 serial culture media, but there was no significant difference among the three groups. The total cell number of blastocysts in PZM-3 embryo culture media containing $5{\mu}g/ml$ insulin was significantly higher than that of the control (no insulin) ($44.3{\pm}9.1$ vs. $33.9{\pm}11.7$). For isolation of PESCs-like, the rates of porcine blastocysts attached to feeder layers and ICM colony formation in Method B (nude embryo culture) were better than those in Method A (intact embryo culture).

Reduction of Mitochondrial Derived Superoxide by Mito-TEMPO Improves Porcine Oocyte Maturation In Vitro (Mito-TEMPO에 의한 미토콘드리아 유래 초과산화물의 감소가 돼지 난모세포 성숙에 미치는 영향)

  • Yang, Seul-Gi;Park, Hyo-Jin;Lee, Sang-Min;Kim, Jin-Woo;Kim, Min-Ji;Kim, In-Su;Jegal, Ho-Geun;Koo, Deog-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.10-19
    • /
    • 2019
  • Morphology of cumulus-oocyte-complexes (COCs) at germinal vesicle (GV) stage as one of the evaluation criteria for oocyte maturation quality after in vitro maturation (IVM) plays important roles on the meiotic maturation, fertilization and early embryonic development in pigs. When cumulus cells of COCs are insufficient, which is induced the low oocyte maturation rate by the increasing of reactive oxygen species (ROS) in porcine oocyte during IVM. The ROS are known to generate including superoxide and hydrogen peroxide from electron transport system of mitochondria during oocyte maturation in pigs. To regulate the ROS production, the cumulus cells is secreted the various antioxidant enzymes during IVM of porcine oocyte. Our previous study showed that Mito-TEMPO, superoxide specific scavenger, improves the embryonic developmental competence and blastocyst formation rate by regulating of mitochondria functions in pigs. However, the effects of Mito-TEMPO as a superoxide scavenger to help the anti-oxidant functions from cumulus cells of COCs on meiotic maturation during porcine oocyte IVM has not been reported. Here, we categorized experimental groups into two groups (Grade 1: G1; high cumulus cells and Grade 2: G2; low cumulus cells) by using hemocytometer. The meiotic maturation rate from G2 was significantly (p < 0.05) decreased (G1: $79.9{\pm}3.8%$ vs G2: $57.5{\pm}4.6%$) compared to G1. To investigate the production of mitochondria derived superoxide, we used the mitochondrial superoxide dye, Mito-SOX. Red fluorescence of Mito-SOX detected superoxide was significantly (p < 0.05) increased in COCs of G2 compared with G1. And, we examined expression levels of genes associated with mitochondrial antioxidant such as SOD1, SOD2 and PRDX3 using a RT-PCR in porcine COCs at 44 h of IVM. The mRNA levels of three antioxidant enzymes expression in COCs from G2 were significantly (p < 0.05) lower than COCs of G1. In addition, we investigated the anti-oxidative effects of Mito-TEMPO on meiotic maturation of porcine oocyte from G1 and G2. Meiotic maturation and mRNA levels of antioxidant enzymes were significantly (p < 0.05) recovered in G2 by Mito-TEMPO ($0.1{\mu}M$, MT) treatment (G2: $68.4{\pm}3.2%$ vs G2 + MT: $73.9{\pm}1.4%$). Therefore, our results suggest that reduction of mitochondria derived superoxide by Mito-TEMPO may improves the meiotic maturation in IVM of porcine oocyte.

Effect of Antioxidants on Arsenite Exposed Porcine Embryonic Development

  • Kim, Han-Su;Lee, Yu-Sub;Lee, Sang-Hee;Cheong, Hee-Tae;Park, Choon-Keun;Lee, Seunghyung;Yang, Boo-Keun
    • Biomedical Science Letters
    • /
    • v.23 no.1
    • /
    • pp.25-29
    • /
    • 2017
  • This study was to investigate the role of antioxidants on development in arsenite exposed porcine embryos. Oocytes were collected from porcine ovary, and then matured for 44 h. Maturated oocytes were incubated with sperm for 6 h, and fertilized oocytes with sperm (embryos) cultured for 48 h. After, embryos were culture with arsenite and/or antioxidants (melatonin, silymarin, curcumin and vitamin) for 120 h. Formation of pre-morulae, morulae and blastosysts rate was measured using microscope. In results, 10, 100 and 100 nM arsenite significantly decreased morulae and blastocysts formation compared to control in pigs (P<0.05). $10{\mu}M$ silymarin and $100{\mu}M$ vitamin E increased blastocyst formation compared to 10 nM arsenite exposed embryos, but there were no significantly among the treatment, and 1 nM melatonin and $5{\mu}M$ curcumin did not influence blastocysts formation in 10 nM arsenite exposed embryos. In summary, arsenite decreased embryo development, $10{\mu}M$ silymarin, $100{\mu}M$ vitamin E, 1 nM melatonin and $5{\mu}M$ curcumin had no positive effect to blastocyst formation in arsenite exposed porcine embryos. Therefore, we suggest that little arsenite may have negative effect to embryo development, and silymarin, vitamin E, melatonin and curcumin could not rescue embryo development from damage by arsenite in pigs.

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF

In Vitro Development and Chromosome Constitution of Porcine Parthenotes following Different Activation Treatments

  • Wi, Hae-Joo;Kwon, Dae-Jin;Park, Joo-Hee;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • This study was conducted to examine the protein kinase inhibitors, 6-dimethylaminopurine (DMAP) and cycloheximide (CHXM) on the development and chromosome constitution of porcine parthenogenetic embryos. In vitro matured oocytes were activated by electric stimuli (ES) or a combination of ES with culture in 2 mM DMAP or $10{\mu}g/ml$ CHXM for 4 hr. Activated oocytes were cultured in PZM-3 for 6 days. Some 1-cell embryos and blastocysts were fixed by air dry method to analyze the chromosome constitutions and/or total cell number. Blastocyst development of DMAP-treated group (26.7%) was significantly higher (p<0.05) than those of CHXM-treated and ES control groups. Ploidy in 1-cell stage embryos was not different among groups (77.3 to 81.0%), however, proportion of diploid chromosome constitutions was high in DMAP-treated group (61.9%, p<0.05). In the blastocyst stage, proportion of diploid chromosome plates was significantly high in DMAP-treated group (64.2%, p<0.05), and proportion of abnormal chromosome plates was higher in CHXM-treated group (36.6%, p<0.05) than DMAP-treated group (28.3%,). Proportion of embryos with abnormal chromosome constitutions was slightly increased by DMAP (40.0%) and CHXM (42.1%) treatment due to the increasing of mixoploid (47.4 and 52.0%). The present study shows that the DMAP treatment increase the development of porcine parthenotes. However, parthenogenetic activation by ES or combined treatment with ES and DMAP or CHXM detrimentally affects the chromosome constitutions of porcine parthenotes during early embryonic development, leads to increased abnormal ploidy in the blastocyst stage.