• Title/Summary/Keyword: porcine embryonic development

Search Result 107, Processing Time 0.023 seconds

Studies on In Vitro Fertilization and Development of In Vitro Matured Porcine Follicular Oocytes I. Effect of Media and Capacitation Procedure on In Vitro Fertilization (체외성숙 돼지난포란의 체외수정과 배발달에 관한 연구 I. 배양액, 수정능획득 방법이 체외성숙 난포란의 체외성숙에 미치는 영향)

  • 정형민;엄상준;승경록;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.2
    • /
    • pp.103-111
    • /
    • 1993
  • These experiments were undertaken to establish the optimal culture systems for in vitro maturation, fertilization and subsequently embryonic development of porcine immature follicular oocytes isolated from the ovary of slaughtered pigs. Porcine ovaries were brought to the laboratory from local slaughter house within 1 hour after slaughtering and cumulus oocytes complexes were recovered from antral follicles (3~5mm) with 23 gauge needle. To maturate follicular oocytes, cumulus oocytes complexes were washed three times with TCM-199 containing 25mM HEPES and incubated (39$^{\circ}C$, 5% CO2 in air) for 42hrs. Ejaculated and liquid storaged boar spermatozoa capacitated with different sperm capacitation methods and media were prepared forfertilizaing of matured follicular oocytes in vitro. Fertilization was performed by adding 5~10${mu}ell$ of capacitated spermatozoa containing 1~5$\times$105 sperm/ml to droplets. Eighteen to twenty-eight hours after sperm insemination, fertilized eggs were washed three times with culture media and transferred to the culture media. The fertilization rates of in vitro matured follicular oocytes cultured in B. O., TCM-HEPES, m-KRB, and TALP-II media were 61.3%, 83.0%, 88.9% and 89.2%, respectively. In addition, the polyspermy rates were 60.7%, 66.5%, 53.8%, and 43.9%, respectively. These data indicated that the highest of fertilization and the lowest of polyspermy rate was shown in TALP-II medium. Spermatozoa capacitated by caffeine, heparin, and percoll density gradient treatment in the 4 different media, the fertilization rates were 33.0~57.2%, 39.9~90.2%, and 52.6~92.8%, respectively, showing the lowest rate in caffeine treatment. The development rate of follicular oocytes, fertilized with the spermatozoa capacitated by caffeine, heparin, and percoll gradient in the TALP-II medium, upto 2 to 4-cell stages were 32.6%, 74.5% and 70.9%, respectively. Finally, fertilization rates of follicular oocytes cultured with follicular fluid containing medium from 10 to 100% were 61.2~94.1% and the rates (90~94%) with 10~20% follicular fluids were significantly higher than those (85.3%) of cultured in the media without follicular fluid. In addition, the rates of pronucleus formation were also higher in follicular fluid treated group (73.1~83.0%) than those (64.7%) of oocytes cultured without follicular fluid. The highest fertilization and pronucleus formation rates was found in oocytes cultured with 10% follicular fluid. These results suggest that the addition of heparin or percoll density gradient method is better capacitation method. Furthermore, the addition of porcine follicular fluid to the fertilization medium may improve the fertilization rates and formation of pronucleus.

  • PDF

Expression Analysis of Programmed Cell Death Genes in Porcine Parthenogenesis (돼지 단위생식란의 세포사멸 유전자 발현 양상에 관한 연구)

  • Son, Jong-Yoon;Kim, Sang-Hwan;Jung, Duk-Won;Ryu, Chun-Yeol;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.239-248
    • /
    • 2015
  • The nature of molecular mechanisms governing embryonic cell block is largely unknown, but recent reports have demonstrated that proper execution of programmed cell death is crucial for this process. The main objective of this study is to determine effects of programmed cell death on porcine oocytes development in vitro after parthenogenesis. Among the blastocysts matured in 3MA, MAP1LC3A and ATG5 RNA gene expression level increased in the order of Cyst < 3MA < RP. However, Casp-3 and TNF-r RNA gene expression level decreased in the order of RP < 3MA < Cyst. Expression of mTOR within the RP-cultured blastocyst was the most highly to the inner cell mass, while 3MA-cultured blastocyst showed very lowest expression in inner cell mass. The expression of mTOR showed a pattern opposite to that of MAP1LC3A. That is, its expression was the lowest in Cyst group. When the enzymatic activity of MMP-2 and MMP-9 was assessed in culture, the level of active MMP-9 was higher expression in the medium of each RP treatment group, with the level of another treatment group being relatively higher. Analyses of TIMP-2 and TIMP-3 revealed that their expression was higher in groups that did not receive RP treatment. More specifically, the level of TIMP-2 was not affected by Cyst treatment, while the level of TIMP-3 was higher in 3MA and RP treatment group. There was highly cell division activation efficiency of parthenogenesis on cultured system of RP supplement IVC medium. Therefore, these results suggest that embryo development was significantly increased in conditional culture medium with active autophagy as compared to common cultured condition. Further investigation of this distinction may enable the development of innovative improvements for the production of porcine somatic cell nuclear transfer.

Hsp90 Inhibitor Induces Cell Cycle Arrest and Apoptosis of Early Embryos and Primary Cells in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Hong, Joo-Hee;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.33-45
    • /
    • 2011
  • Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of cancer cell. Inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the cancer cell was reported. However, its role during oocyte maturation and early embryo development is very insufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on meiotic maturation and early embryonic development in pigs. We also investigated several indicators of developmental potential, including structural integrity, gene expression (Hsp90-, cell cycle-, and apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Then, we examined the roles of Hsp90 inhibitor on viability of primary cells in pigs. Porcine oocytes were cultured in the NCSU-23 medium with or without 17-AAG for 44 h. The proportion of GV arrested oocytes was significantly different between the 17-AAG treated and untreated group (78.2 vs 34.8%, p<0.05). After completion of meiotic maturation, the proportion of MII oocytes was lower in the 17-AAG treated group than in the control group (27.9 vs 71.0%, p<0.05). After IVF, the percentage of penetrated oocytes was significantly lower in the 17-AAG treated group (25.2%), resulting in lower normal pronucleus formation (2PN of 14.6%). Therefore, the inhibition of meiotic progression by Hsp90 inhibitor played a critical role in fertilization status. Porcine embryo were cultured in the PZM-3 medium with or without 17-AAG for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (7.5 vs 4.4, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. The mRNA expressions of cell cycle-related genes were down-regulated in the 17-AAG treated group compared with control. Also, the expression of the pro-apoptotic gene Bax increased in 17-AAG treated group, whereas expression of the anti-apoptotic gene Bel-XL decreased. However, the expression of ER stress-related genes did not changed by 17-AAG. Cultured pESF cells were treated with or without 17-AAG and used for MIT assay. The results showed that viability of pESF cells were decreased by treatment of 17-AAG ($2{\mu}M$) for 24 hr. These results indicated that 17-AAG decreased cell proliferation and increased cell death. Expression patterns Hsp90 complex genes (Hsp70 and p23), cell cycle-related genes (cdc2 and cdc25c) and apoptosis-related genes (Bax and Bcl-XL) were significantly changed by using RT-PCR analysis. The spliced form of pXbp-1 product (pXbp-1s) was detected in the tunicamycin (TM) treated cells, but it is not detected in 17-AAG treated cells. In conclusion, Hsp90 appears to play a direct role in porcine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with cell cycle- and apoptosis-related genes expression in developing porcine embryos.

Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities

  • Fu, Bo;Ren, Liang;Liu, Di;Ma, Jian-Zhang;An, Tie-Zhu;Yang, Xiu-Qin;Ma, Hong;Zhang, Dong-Jie;Guo, Zhen-Hua;Guo, Yun-Yun;Zhu, Meng;Bai, Jing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1703-1712
    • /
    • 2015
  • The in vitro maturation (IVM) efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+) oocytes with low glucose-6-phosphate dehydrogenase (G6PDH) activity have shown superior quality than BCB negative (-) oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG) migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9) and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB- oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes.

Evaluation of porcine urine-derived cells as nuclei donor for somatic cell nuclear transfer

  • Zhang, Yu-Ting;Yao, Wang;Chai, Meng-Jia;Liu, Wen-Jing;Liu, Yan;Liu, Zhong-Hua;Weng, Xiao-Gang
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.40.1-40.13
    • /
    • 2022
  • Background: Somatic cell nuclear transfer (SCNT) is used widely in cloning, stem cell research, and regenerative medicine. The type of donor cells is a key factor affecting the SCNT efficiency. Objectives: This study examined whether urine-derived somatic cells could be used as donors for SCNT in pigs. Methods: The viability of cells isolated from urine was assessed using trypan blue and propidium iodide staining. The H3K9me3/H3K27me3 level of the cells was analyzed by immunofluorescence. The in vitro developmental ability of SCNT embryos was evaluated by the blastocyst rate and the expression levels of the core pluripotency factor. Blastocyst cell apoptosis was examined using a terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. The in vivo developmental ability of SCNT embryos was evaluated after embryo transfer. Results: Most sow urine-derived cells were viable and could be cultured and propagated easily. On the other hand, most of the somatic cells isolated from the boar urine exhibited poor cellular activity. The in vitro development efficiency between the embryos produced by SCNT using porcine embryonic fibroblasts (PEFs) and urine-derived cells were similar. Moreover, The H3K9me3 in SCNT embryos produced from sow urine-derived cells and PEFs at the four-cell stage showed similar intensity. The levels of Oct4, Nanog, and Sox2 expression in blastocysts were similar in the two groups. Furthermore, there is a similar apoptotic level of cloned embryos produced by the two types of cells. Finally, the full-term development ability of the cloned embryos was evaluated, and the cloned fetuses from the urine-derived cells showed absorption. Conclusions: Sow urine-derived cells could be used to produce SCNT embryos.

Endoplasmic Stress Inhibition during Oocyte Maturation Improves Preimplantation Development of Cloned Pig Embryos

  • Elahi, Fazle;Shin, Hyeji;Lee, Joohyeong;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.287-295
    • /
    • 2017
  • Mitochondrial dysfunction is found in oocytes and transmitted to offspring due to maternal obesity. Treatment of obese mothers with endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL) can reverse the mitochondrial dysfunction and result in normal embryonic development. Pig oocytes have also shown ER stress mostly in metaphase II stage. ER stress in oocytes may hinder the in vitro production of pig embryos. This study investigated the effect of ER stress inhibition by SAL treatment during in vitro maturation (IVM) of porcine oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we tested various concentrations of SAL. SAL at 10 nM showed higher (P < 0.05) developmental competence to the blastocyst stage (55.6%) after parthenogenesis (PA) than control (44.2%) while not different from other concentrations (49.2, 51.6, and 50.8% for 1, 50, and 100 nM, respectively). Secondly, we performed time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h of IVM significantly improved PA embryonic development to the blastocyst stage compared to control (40.5, 46.3, 51.7 and 60.2% for control, 0 to 22 h, 22 to 44 h and 0 to 44 h of IVM, respectively, P < 0.05). Glutathione (GSH) content is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on developmental competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decreased ROS level (P < 0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (39.6% vs. 24.7%, P < 0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development PA and cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.

Study on Distribution of Oct4 Expression and Change of Apoptosis in Nuclear Transfer Blastocyst using Oct4-Transfected Mesenchymal Stem Cells (Oct4-Transfection한 중간엽줄기세포 유래 핵이식 배반포의 Oct4 발현 분포 및 세포 자멸사의 변화에 관한 연구)

  • Lee, Won-Jae;Lee, Jeong-Hyeon;Rho, Gyu-Jin;Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • There are various factors i.e. donor cell type, culture system as well as technical procedures which influence the pre-implantation embryonic development; however, may attempts have been made and still it is under investigation to improve the cloning efficiency using somatic cell nuclear transfer technique. It is has been investigated that stem cells like mesenchymal stem cell are able to more efficiently reprogram and reactivate the expression of early embryonic genes to promote nuclear transfer efficiency. In addition, Oct4 expression plays a pivotal role in early embryo development. In the present study, we investigated distribution of Oct4 expression and changes of apoptosis and total cell number in nuclear transfer blastocyst after using Oct4 transfected bone marrow stem cell as donor cells. Although Oct4-RFP expression was observed across blastocyst, more concentrated intensity was shown at hatched region in blastocyst on day 7. Reduction of apoptotic bodies was revealed in Oct4 transfected blastocyst by TUNEL staining, however, there was no significant difference in total cell number between Oct4 transfected and non-transfected nuclear transfer embryos. In conclusion, Oct4 transfected donor cells exhibited higher expression in hatching sight in day 7 blastocyst and were able to prevent apoptosis compared to non-transfected donor cells.

Mapping, Tissue Distribution and Polymorphism of Porcine Retinol Binding Protein Genes (RBP5 and RBP7)

  • Gong, W.H.;Tang, Z.L.;Han, J.L.;Yang, S.L.;Wang, H.;Li, Y.;Li, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1544-1550
    • /
    • 2008
  • The retinoids (vitamin A and its derivatives) play a critical role in vision, growth, reproduction, cell differentiation and embryonic development. Using the IMpRH panel, porcine cellular retinol binding protein genes 5 and 7 (RBP5 and RBP7) were assigned to porcine chromosomes 5 and 6, respectively. The complete coding sequences (CDS) of the RBP5 and RBP7 genes were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) method, and the deduced amino acid sequences of both genes were compared to human corresponding proteins. The mRNA distributions of the two genes in adult Wuzhishan pig tissues (lung, skeletal muscle, spleen, heart, stomach, large intestine, lymph node, small intestine, liver, brain, kidney and fat) were examined. A total of nine single nucleotide polymorphisms (SNPs) were identified in two genes. Three of these SNPs were analyzed using the polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) method in Laiwu, Wuzhishan, Guizhou, Bama, Tongcheng, Yorkshire and Landrace pig breeds. Association analysis of genotypes of these SNP loci with economic traits was done in our experimental populations. Significant associations of different genotypes of $RBP5-A/G^{63}$, $RBP5-A/G^{517}$ and $RPB5-T/C^{intron1-90}$ loci with traits including maximum carcass length (LM), minimum carcass length (LN), marbling score (MS), back fat thickness at shoulder (SBF), meat color score (MCS) and hematocrit (HCT) were detected. These SNPs may be useful as genetic markers in genetic improvement for porcine production.

Effects opf Hormone Treatment on Superovulation and Embryonic Development in the Gilts (미경산돈에 대한 호르몬처리가 과배란 및 난자발달에 미치는 영향)

  • 장원경;박진기;이명식;박수봉;이장형;박용윤;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.3
    • /
    • pp.225-232
    • /
    • 1996
  • The purpose of this study was to evaluate effects of hormonal treatments on corpus lutea, follicles and development stage of embryos for enhancing the production efficiency of in vivo porcine embryos suitable to introduce fo foreign genes. Hundred and twenty gilts were allocated to 6 experimental group in different combinations of hormones PG 600, PMSG, hCG and altrenogest. When gilts were treated with chorionic gonadotrophin 200 IU and serum gonadotrophin 200 IU(PG 600), altrenogest, serum gonadotrophin (PMSG) 1,000 IU, and chorionic gonadotrophin(hCG) 750 IU (PAPh), the numbers of corpus luteum (30.4) were significantly higher than those of other treatment groups (P<0.05). The number of corpus luteum from ovary in either right (9.1) or left (10.1) side was not significantly changed with hormone treatments. Number of follicles in control was 20.7, which was higher than those of hormonal treatment groups. The average numbers of 1, 2, 4 and 8 cell staged embryos were 8.1, 1.4, 1.6 and 1.0 in control, but the numbers of 1-cell stage in PAPh treatment group was 24.2, which was significantly higher than those of treatment groups (P<0.05). Therefore, these data indicated that hormonal treatment, especially PAPh, enhanced the developments of follicles, corpus lutea and embryos and increased the collection rate of the 1-cell stage embryos to introduce of foreign genes.

  • PDF

The Beneficial Effects of Ferulic Acid supplementation during In Vitro Maturation of Porcine Oocytes on Their Parthenogenetic Development

  • Lee, Kyung-Mi;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • Ferulic Acid (FA) is a metabolite of phenylalanine and tyrosine, a phenolic compound commonly found in fruits and vegetables. Several studies have shown that FA has various functions such as antioxidant effect, prevention of cell damage from irradiation, protection from cell damage caused by oxygen deficiency, anti-inflammatory action, anti-aging action, liver protective effect and anti-cancer action. In this study, we investigated the maturation rate, intracellular glutathione (GSH) and reactive oxygen species (ROS) of porcine oocytes by adding FA to the in vitro maturation (IVM) medium and examined subsequent embryonic developmental competence at 5% oxygen through parthenogenesis. There is no significant difference between the control group ($0{\mu}M$) and treatment groups ($5{\mu}M$, $10{\mu}M$, $20{\mu}M$) on maturation rates. Intracellular GSH levels in oocyte treated with $5{\mu}M$ of FA significantly increased (P < 0.05), and $20{\mu}M$ of FA revealed significant decrease (P < 0.05) in intracellular ROS levels compared with the control group. Oocytes treated with FA exhibited significantly higher cleavage rates (79.01% vs 89.19%, 92.20%, 90.89%, respectively) than the control group. Oocytes treated with $10{\mu}M$ showed significantly higher blastocyst formation rates (28.3% vs 40.3%, respectively) after PA than the control group. Total cell numbers in blastocyst of $10{\mu}M$ FA displayed significantly higher (39.4 vs 51.9, respectively) than the control group. In conclusion, these results suggested that treatment with FA during IVM improved the developmental potential of porcine embryos by increasing intracellular GSH synthesis and reducing ROS levels. Also, there was an improvement of cleavage rate, blastocyst formation and total cell numbers in blastocysts. It might be associated with Keap1-Nrf2 pathway as an antioxidant regulate pathway that plays a crucial role in determining the sensitivity of cells to oxidative damages by regulating the basal and inducible expression of enzymes which is related to detoxification and anti-oxidative effects, stress response enzymes and/or proteins and ABC transporters.