• 제목/요약/키워드: polyurethanes

검색결과 151건 처리시간 0.029초

스플릿 레더 코팅을 위한 폴리 카프로 락톤 디올 기반 수성 폴리 우레탄의 제조 및 물리적 특성 (Preparation and Physical Properties of Polycaprolactone Diol-based Water-based Polyurethanes for Split Leather Coatings)

  • 이주엽
    • 한국응용과학기술학회지
    • /
    • 제37권1호
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, isophorone diisocyanate (IPDI) and dimethylolbutanoic acid (DMBA) were used on the basis of poly caprolactone diol (3M, 3.5M, 4M, 4.5M) for the synthesis of water-based polyurethanes for coating on skin layers of leather. Tensile strength, elongation, and adhesive strength of the prepared samples were measured. As a result of measuring the tensile strength, the tensile strength was found to be 4.09 kgf / ㎟ when 3 moles were applied, and 1.071 kgf / ㎟ when 4.5 moles were applied. Elongation was 366 % when 3 moles of PCL were applied, and 709 % at 4.5 moles. Adhesive strength was 2.887 kgf / cm when 3 moles of PCL was applied and 0.998 kgf / cm when 4.5 moles were applied.

Preparation and Properties of Crosslinkable Waterborne Polyurethanes Containing Aminoplast -Effect of Curing Condition-

  • Kwon Ji-Yun;Rahman Mohammad Mizanur;Kim Han-Do
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.95-104
    • /
    • 2006
  • In order to improve the water swelling, thermal/mechanical and adhesion properties of waterborne polyurethane (WBPU), a series of the crosslinkable WBPUs containing hydrophilic ionic component, dimethylol propionic acid (20 mole%), were prepared by in-situ polymerization using a cross-linker hexakis (methoxymethyl) melamine (HMMM). Effects of the HMMM content (2, 4, and 6 wt%) and curing temperature on these properties of the crosslinked WBPUs samples were investigated. All properties were found to increase with increasing HMMM content. It was found that the optimum curing temperature of the WBPU films and adhesives was near $120^{\circ}C$, which was not dependent on the HMMM content.

Effect of Polymerization Procedure on Thermal and Mechanical Properties of Polyether Based Thermoplastic Polyurethanes

  • Kim, Seong-Geun;Lee, Dai-Soo
    • Macromolecular Research
    • /
    • 제10권6호
    • /
    • pp.365-368
    • /
    • 2002
  • Thermoplastic polyurethanes (TPUs) with different hard segment length has been prepared from a fixed molar ratio of poly(tetramethylene ether glycol), 4,4'-diphenylmethane diisocyanate, and 1,4-butanediol by different polymerization procedures. Results reveal that the on-set temperature of endotherms ( $T_{cc}$ ) due to the crystallization of hard segments by cooling the TPUs from melt and the peak temperature of endotherms due to the melting of hard segments ( $T_{mh}$ ) by heating the TPUs increased and levelled off with increasing the hard segment length of TPUs. It has also been observed that soft segment glass transition temperature ( $T_{gs}$ ) of TPU decreased slightly with increasing the hard segment length, which explains less mixing of soft segments and hard segments. In tensile measurement of TPUs, strain hardening is observed with increasing the hard segment length, which is attributed to the strain induced crystallization of soft segments.

바이오 폴리우레탄과 석유기반 폴리우레탄의 물성 비교 (Property Comparison of Bio-Polyurethane and Petroleum based Polyurethane)

  • 이담희;이관희;조을룡
    • 반도체디스플레이기술학회지
    • /
    • 제17권2호
    • /
    • pp.47-52
    • /
    • 2018
  • The three polyols, poly(trimethylene ether) glycol 2000, poly(tetramethylene ether) glycol 2000 and poly (tetramethylene ether) glycol 1000 were reacted with 4,4-diphenylmethane diisocyanate to get polyurethanes. The synthesized three polyurethanes were measured by FT-IR, NMR for investigating chemical structures. Through two spectroscophical methods, It is found that urethane group exists in the three polymers. From the evaluation of hardness, glass transition temperature, tensile strength, and water resistance, the results showed increasing order of Poly(tetramethylene ether) glycol 1000 > Poly(trimethylene ether) glycol 2000 > Poly(tetramethylene ether) glycol 2000 with the content of hard segment in polyurethane.