• Title/Summary/Keyword: polyurethane fiber

Search Result 166, Processing Time 0.02 seconds

Evaluation of Thermal Performance and Mechanical Properties in the Cryogenic Environment of Basalt Fiber Reinforced Polyurethane Foam (현무암 섬유 보강 폴리우레탄폼의 열적 성능 및 극저온 환경에서의 기계적 특성 평가)

  • Jeon, Sung-Gyu;Kim, Jeong-Dae;Kim, Hee-Tae;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • LNG CCS which is a special type of cargo hold operated at -163℃ for transporting liquefied LNG is composed of a primary barrier, plywood, insulation panel, secondary barrier, and mastic. Currently, glass fiber is used to reinforce polyurethane foam. In this paper, we evaluated the possibility of replacing glass fiber-reinforced polyurethane foam with basalt fiber-reinforced polyurethane foam. We conducted a thermal conductivity test to confirm thermal performance at room temperature. To evaluate the mechanical properties between basalt and glass-fiber-reinforced polyurethane foam which is fiber content of 5 wt% and 10 wt%, tensile and an impact test was performed repeatedly. All of the tests were performed at room temperature and cryogenic temperature(-163℃) in consideration of the temperature gradient in the LNG CCS. As a result of the thermal conductivity test, the insulating performance of glass fiber reinforced polyurethane foam and basalt fiber reinforced polyurethane foam presented similar results. The tensile test results represent that the strength of basalt fiber-reinforced polyurethane foam is superior to glass fiber at room temperature, and there is a clear difference. However, the strength is similar to each other at cryogenic temperatures. In the impact test, the strength of PUR-B5 is the highest, but in common, the strength decreases as the weight ratio of the two fibers increases. In conclusion, basalt fiber-reinforced polyurethane foam has sufficient potential to replace glass fiber-reinforced polyurethane foam.

Electro-spinning of Polyurethane (Polyurethane의 전기방사)

  • 차동일;강영식;류영준;김학용;이덕래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.348-350
    • /
    • 2001
  • Polyurethane(PU)은 내마모성, 내약품성, 내용제성이 좋으며 내노화성과 산소에 대한 안정성이 뛰어난 고분자로서 spandex를 비롯하여 코팅, 고무, 도료, 플라스틱, 복합재료 등의 여러 분야에서 이용되어지며 PU를 전기방사 하여 얻은 부직포는 wound dressing, anti-bacteria mask, 인조 피혁, stent 등에 이용할 수 있을 것으로 기대된다. (중략)

  • PDF

Stress-Strain Behavior of the Electrospun Thermoplastic Polyurethane Elastomer Fiber Mats

  • Lee Keunhyung;Lee Bongseok;Kim Chihun;Kim Hakyong;Kim Kwanwoo;Nah Changwoon
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.441-445
    • /
    • 2005
  • Thermoplastic polyurethane elastomer (TPUe) fiber mats were successfully fabricated by electrospinning method. The TPUe fiber mats were subjected to a series of cycling tensile tests to determine the mechanical behavior. The electrospun TPUe fiber mats showed non-linear elastic and inelastic characteristics which may be due to slippage of crossed fiber (non-bonded or physical bonded structure) and breakage of the electro spun fibers at junctions (point-bonded or chemical bonding structure). The scanning electron microscopy (SEM) images demonstrated that the point-bonded structures of fiber mats played an important role in the load-bearing component as determined in loading-unloading component tests, which can be considered to have a force of restitution.

Effect of Repetitive Impacts on the Mechanical Behavior of Glass Fiber-reinforced Polyurethane Foam (반복 충격이 유리섬유 강화 폴리우레탄 폼의 기계적 성능에 미치는 영향)

  • Kim, Myung-Sung;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.85-91
    • /
    • 2019
  • In a cryogenic storage structure, the insulation system is in an environment in which fluid impact loads occur throughout the lifetime of the structure. In this study, we investigated the effect of repetitive impact loading on the mechanical performance of glass fiber-reinforced polyurethane foam. The repeated impact loading test was conducted in accordance with the required impact energy and the required number of repetitive impacts. The impact behavior of glass fiber-reinforced polyurethane foam was analyzed in terms of stress and displacement. After the impact test, the specimen was subjected to a compression test to evaluate its mechanical performance. We analyzed the critical impact energy that affected mechanical performance. For the impact conditions that were tested, the compressive strength and elastic modulus of the polyurethane foam can be degraded significantly.

Physical and chemical Cross-Linking Effects in Thermoplastic Polyurethane Elastomers with Different Macroglycol

  • Heo, Jae-Ho;Jeong, Du-Gam;Kim, Eun-Young;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1997.10a
    • /
    • pp.126-130
    • /
    • 1997
  • A series of Thermoplastic polyurethane elastomers was prepared via a two-step polymerization process. The NCO/OH feed ratio of polyurethane synthesized in this study was varied from 1 to 1.3. Studies have been made on the effects of chemical and physical cross-linkina, and the properties of thermoplastic polyurethane elastomers based on isophorone diisocyanate (IPDI)/1,4-butanediol (BD)/poly(propylene glycol) (PPG, MW:2000), isophorone diisocyanate (IPDI)/BD /poly(oxytetramethylene) glycol (PTMG, MW:2000) was compared. These materials were characterized using FTIR spectrometer, dynamic mechanical thermal analyzer, and tensile retraction tester. PTMG based polyurethane elastomers showed higher elasomeric behavior than PPG based polyurethane elastomers at the same NCO/OH ratio. This feature has been connected with the specific nature of the polyols. The permanent set(%) was decreased with increasing maximum elongation from 50% to 300%.

  • PDF

Bonding Performance of Glulam Reinforced with Textile Type of Glass- and Aramid-Fiber, GFRP and CFRP

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.156-162
    • /
    • 2011
  • To evaluate the bonding performance of reinforced glulam, the textile type of glass fiber and aramid fiber, and the sheet type of glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) were used as reinforcements. The reinforced glulam was manufactured by inserting reinforcement between the outmost and middle lamination of 5ply glulam. The types of adhesives used in this study were polyvinyl acetate resins (MPU500H, and MPU600H), polyurethane resin and resorcinol resin. The block shear strengths of the textile type in glass fiber reinforced glulam using MPU500H and resorcinol resin were higher than 7.1 N/$mm^2$, and these glulams passed the wood failure requirement of Korean standards (KS). In case of the sheet types, GFRP reinforced glulams using MPU500H, polyurethane resin and resorcinol resin, and CFRP reinforced glulams using MPU500H and polyurethane resin passed the requirement of KS. The textile type of glass fiber reinforced glulam using resorcinol resin after water and boiling water soaking passed the delamination requirement of KS. The only GFRP reinforced glulam using MPU500H after water soaking passed the delamination requirement of KS. We conclude that the bonding properties of adhesive according to reinforcements are one of the prime factors to determine the bonding performance of the reinforced glulam.

Investigation of Adhesion property between Glass Fiber Reinforced Plastic and Polyurethane adhesives on Peel strength under Gyogenic tempernture (극저온에서 유리섬유강화플라스틱 표면의 유리섬유와 폴리우레탄 접착제간의 접착특성이 전체 박리강도에 미치는 영향에 대한 연구)

  • Shon, Min-Young;Lee, Jae-Kwang;Hong, Jeong-Lak
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.13-19
    • /
    • 2009
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane adhesive is using for LNG carrier with cryogenic temperature condition. Even if similar polyurethane adhesive is used for different substrate, it shows different adhesion properties. Specially, variation of adhesion properties depending on the resin system or fiber is very important factor for selection of adhesive on industrial application. In present study, we got different peel strength according to the different test temperature when different polyurethane adhesive was used for same fiber reinforced composite. The main cause was investigated using by SEM and it was proven that the different adhesion property between glass fiber on composite surface and polyurethane adhesives at cryogenic temperature.

Relationship between polyurethane chain rigidity and segment/domain deformation behavior (Polyurethane 사슬의 강직성과 segment 및 domain의 변형 거동과의 관계)

  • 이정상;이한섭
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.195-196
    • /
    • 2003
  • Polyurethane(PU)은 물리적 화학적 성질이 매우 다른 두 segment(hard/soft)로 이루어진 block copolymer로서 상온에서 미세상분리된 구조를 가진다. 이런 미세 상분리 구조는 PU의 물리적 성질을 결정하는 가장 중요한 요소이며, hard segment(H/S)의 화학적 구조에 따른 PU사슬의 강직성은 H/S의 packing및 상분리도에 큰 영향을 미친다. 본 연구에서는 H/S의 화학적 구조를 변화시켜 사슬의 강직성이 서로 다른 다양한 PU을 합성하였으며 Synchrotron SAXS와 FTIR-dichioism을 이용하여 PU 사슬의 강직성에 따른 거시적인 domain의 변형거동과 미시적인 사슬의 변형거동을 관찰 하였다. (중략)

  • PDF

Preparation and Properties of Water Vapor Permeable Waterborne Polyurethane -Effect of Polyol- (투습성 수분산 폴리우레탄의 제조와 특성 - 폴리올의 영향 -)

  • Sang-Woo Park;Myung-Hwan Lee;Young-Hee Lee;Han-Do Kim
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.5-8
    • /
    • 2001
  • Waterborne Polyurethane dispersions continue to show growth in commercial usage due to the ever increasing environmental legislation to reduce VOC in Coating and adhesive materials. The transition from solvent-based to waterborne Polyurethane(WPu) has also been facilitated by advances in both the chemistry and technology employed and the formulation expertise required. (omitted)

  • PDF

Fabrication of Ceramic Particles Deposited Nano-web using Electrospinning Process and Its Far-infrared Ray Emission Property (원적외선 방출 특성을 갖는 나노 웹의 제조 및 원적외선 방사 특성에 관한 연구)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.118-122
    • /
    • 2010
  • The interest in textile which has far-infrared ray emissive property has been increased in the field of biophysics and medicine. In this study, far-infrared ray emissive polyurethane nano-web was obtained using electrospinning of polyurethane(PU) solution mixed with ceramics powder and far-infrared ray emissive properties of nano-web were evaluated by measuring far-infrared ray emission power and emissivity(%). To investigate the influence of concentration of ceramics powder in PU solution and temperature for far-infrared ray emissive properties, far-infrared ray emissivity was measured at varied temperature using various nano-web including varied concentration of ceramics powder. Polyurethane nano-web was characterized by SEM to observe the deposition of ceramics powder on polyurethane nano-web surface. The far-infrared ray emissivity was increased with the concentration of ceramics powder in the nano-web. The far-infrared ray emission power was enhanced with increasing temperature of the samples; however, far-infrared ray emissivity was decreased with increasing temperature because the increase of emission power of ceramic containing nano-web was lower than the emission power of black body one.