• Title/Summary/Keyword: polypropylene screen

Search Result 7, Processing Time 0.024 seconds

Effect of Combining Wood Particles and Plastic(Polypropylene) Screen on the Physical and Mechanical Properties of Board (목재(木材)파이티클과 플라스틱(폴리프로필렌) 망(網)의 결체(結締) 보오드의 물리(物理) 및 기술적(機械的) 성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.21-44
    • /
    • 1988
  • As a way for the effective utilization of pallman chips and sawdusts, these furnish materials were combined with non-woody material of plastic (polypropylene) screen in board manufacturing to improve their weak physical and mechanical properties. The conventional boards were made with conditions of specific gravity 0.40, 0.55, 0.70, and 0.85, resin content 8, 10, 12 and 14%, and number of polypropylene screen 1, 2, 3 and 4, and press-lam boards were also manufactured. The physical and mechanical properties were measured and discussed on thickness swelling, bending modulus of rupture and elasticity, tensile strength, internal bond strength, and screw holding strength. The results obtained at this study were summarized as follows: 1. In thinckness swelling both of pallman chip board and sawdust board were improved by the increase of resin content, and press-lam boards showed lower thickness swelling than conventional boards. 2. Both the modulus of rupture and elasticity were increased with the increase of specific gravity, and press-lam boards showed higher modulus of rupture and elasticity than conventional boards. On the other hand, modulus of rupture was increased with the increase of number of polypropylene screen and resin content whereas these effects in modulus of elasticity was not recognized. 3. Tensile strength was increased with the increase of specific gravity, and the boards combined with polypropylene screen showed higher tensile strength than control boards. Also tensile strength was increased with the increase of number of polypropylene screen, and press-lam boards revealed higher tensile strength than conventional boards. 4. Internal bond strength was increased with the increase of specific gravity, and the boards combined with polypropylene screen were lower in internal bond strength than control boards. Also, the boards combined with odd number of polypropylene screen showed lower internal bond strength than those combined with even number of polypropylene screen. 5. Screw holding strength was increased with the increase of resin content and specific gravity but significant difference was not approved between boards combined with polypropylene screen and control boards. In press-lam boards, pallman chip boards of higher specific gravity but sawdust boards of lower specific gravity showed better screw holding strength than control boards.

  • PDF

Growth and Cut-Flower Productivity of Spray Rose as Affected by Shading Method during High Temperature Period (차광방법에 따른 고온기 절화용 스프레이 장미의 생장 및 절화 생산성)

  • Cheong, Dong-Chun;Lee, Jin-Jae;Choi, Chang-Hak;Song, Young-Ju;Kim, Hee-Jun;Jeong, Jong-Sung
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.227-232
    • /
    • 2015
  • This experiment was carried out to investigate the effects of shading materials (aluminum specific-shading screen and polypropylene non-woven fabric) and shading ratio (50% and 70%) on climatic changes, cut-flower quality, and yield of spray rose cultivars for export during high temperature periods. The daily cumulative solar radiations were higher with the aluminum specific-shading screen, especially with 50% shading compared to polypropylene non-woven fabric. Air temperature and root zone temperature within rockwool media greatly decreased with the aluminum specific-shading screen, but relative air humidity was not different among shading methods. Chlorophyll contents (SPAD values) were slightly higher with aluminum-specific shading screen than with polypropylene non-woven fabric, and were higher with 50% than with 70% aluminum specific-shading screen. Except for 'Lovely Lydia', marketable and exportable yields of all cultivars were higher with 50% than with 70% aluminum shading treatment. In addition, flowers talk length, stem diameter, number of node and 7ea-leaflet, and floret number tended to be better with aluminum specific-shading screen. Flower stalk length was higher with 70% than with 50% aluminum shading treatment. Chromaticity of petals slightly increased, and vase life was 0.5-2.5 days longer for each cultivar with aluminum specific-shading screen than with polypropylene non-woven fabric.

Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (II) - Development of Thin Composite by Composition Type Applied to Optimum Manufacturing Condition - (합판(合板) 대용(代用) 박판상(薄板狀) 복합재(複閤材) 제조(製造)에 관(關)한 연구(硏究) (II) -최상제조조건(最適製造條件)을 적용(適用)한 구성형태별(構成形態別) 박판상(薄板狀) 복합재(複閤材) 개발(開發)-)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.74-84
    • /
    • 1995
  • Eight types of thin composite panels were manufactured by press-lam and mat-forming process applied to optimum manufacturing condition, studied in former first research by author (1995). They were tested and compared with control boards on dimensional stability, internal bond strength, tensile strength, Screw withdrawal strength, and bending properties. These thin composite panels manufactured by mat-forming process were generally superior to those by press-lam in dimensional stability and mechanical properties. In the dimensional stability and mechanical properties of thin composite panels manufactured by mat-forming process, the thin composite panels (A and E type) composed of particle or sawdust core and veneer face with polyethylene film, were as good as those of common plywood (control board). Internal bond strength showed highest value in the thin composite panel(D type) which composed of particle core and polypropylene screen face with polyethylene film. The thin composite panels(G and H type) composed of sawdust or particle core and polypropylene screen face with polyethylene film by press-lam and mat-forming process, showed most highest value in dimensional stability and water absorption.

  • PDF

Comparison of Heat Insulation Characteristics of Multi-layer Thermal Screen and Development of Curtain System (다겹보온자재의 보온성 비교 및 커튼개폐장치 개발)

  • Lee, Si-Young;Kim, Hark-Joo;Chun, Hee;Yum, Sung-Hyun;Lee, Hyun-Joo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.89-95
    • /
    • 2007
  • This study was accomplished to compare energy saving effects of several heat insulation materials in greenhouse and to develop new automatic opening and closing equipment which is suitable to the most effective heat insulation material. To find out more effective heat insulation material, the magnitude of heat transfer occurred through aluminum screen (ALS), non-woven fabric (NWF), double-layer aluminum screen with chemical cotton sheet (DAL), and multi-layer fabric screen material quilted with non-woven fabric, chemical cotton, poly foam, and polypropylene (MLF) were compared relatively. The results showed that the relative magnitude of heat transfer occurred through MLF was lower than DAL and ALS by 23.3% and 43.0% respectively. MLF screen material was the most effective compared with other heat insulation materials. But because of thickness, there was a need of new mechanism for automatic operation in greenhouse. Accordingly, new screen system using MLF-thick but profitable for keeping warm in greenhouse-was developed. Opening & closing equipment was designed to roll MLF with pipe axis during opening process and pull MLF with string during closing process with electric motors, clutches, drums, and so on. In hot pepper cultivation and energy saving test during winter time, the early stage yield of pepper under MLF screen system was higher than NWF by 27%, and gasoline consumption of MLF screen system was lower than NWF by 46%.

Effects of Covering Materials and Methods on Heat Insulation of a Plastic Greenhouse and Growth and Yield of Tomato (플라스틱하우스의 보온피복 재료 및 방법이 보온력과 토마토의 생육 및 수량에 미치는 영향)

  • Kwon Joon Kook;Lee Jae Han;Kang Nam Jun;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.251-257
    • /
    • 2004
  • This experiment was carried out to investigate the effects of different covering materials and methods on heat insulation of a plastic greenhouse, growth and yield of tomato. Night air and soil temperatures in a double-layer greenhouse with external multifold thermal cover (MTC; eight-ounce cassimere+four-fold polyform+double-fold non-woven fabric+single-fold polypropylene covering were about $1^{\circ}C$ lower than in that with internal MTC covering, but about $3^{\circ}C$ higher than in that with an EVA film screen. Tomato yield in the external MTC covering increased by $2\%\;and\;19\%$ as compared to that in the internal MTC covering and the non-covering of MTC, respectively, due to its high light transmission and insulation effect. Night air temperatures in a double-layer greenhouse with external MTC covering and with thermal screen (polyester plus aluminium) were $2.2^{\circ}C\;and\;4.5^{\circ}C$ higher than those in a double-layer greenhouse with an external MTC covering and in a double-layer greenhouse equipped an EVA film screen, respectively. Tomato yield in the treatment with external MTC covering and a thermal screen was $18\%\;and\;37\%$ greater than that in the external MTC covering and in an EVA film screen, respectively. Results indicate that tomato could be grown without heating or with minimal heating in a double-layer greenhouse covered with MTC and a thermal screen during the winter season in sourthern regions of Korea.

Feasibility Study of Laser Contact Angle Measurement for Nano-fiber Characterization (나노섬유의 특성분석을 위한 레이저 접촉각 측정기의 효율성 연구)

  • 신경인;안선훈;김성훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.554-559
    • /
    • 2003
  • A newly developed contact angle measurement instrument by laser beam projection allows for rapid and direct determination of contact angles. The instrument may have a possibility to characterize newly developed nano-fibers. When the laser beam impinges on an edge of an interface of liquid and solid, projected beam were split across and made two straight lines on a tangent screen. From the result, it could measure the contact angle directly by reading the angle between two split beams. The purpose of this study was to prove reliability and reproducibility of the contact angle measurement instrument by laser beam projection compare to the conventional one by microscope through the comparative experiment and questionnaire. Test samples were selected by consideration of hydrophilic and hydrophobic, such as nylon 6 and polypropylene, respectively. The laser contact angle measurement has accurate, fast and convenient method to measure contact angle, and it can be a unique method to characterize nano-fibers.

The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating (유연 종이 식품 포장재의 개질 아크릴 에멀젼 코팅 특성 및 재활용성 평가)

  • Myungho Lee;In Seok Cho;Dong Cheol Lee;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 2023
  • The worldwide effects of COVID-19 have led to a surge in online shopping and contactless services. The consumption pattern has caused the issues such as the environmental pollution together with the increase of plastic waste. Reducing the reliance on the petroleum based plastic use for the package and replacing it with environmentally friendly material are the simple ways in order to solve those problems. Paper is an eco-friendly product with high recyclability as the food packaging materials but has still poor barrier properties. A barrier coating on surface of the paper can be achieved with the proper packaging materials featuring water, gas and grease barrier. Polyethylene (PE) or polypropylene (PP) coatings which are generally laminated or coated to paper are widely used in food packaging applications to protect products from moisture and provide water or grease resistance. However, recycling of packaging containing PE or PP matrix is limited and costly because those films are difficult to degrade in the environment. This study investigated the recyclability of modified acrylic emulsion coating papers compared to PE and PP polymer matrixes as well as their mechanical and gas barrier properties. The results showed that PE or modified acrylic emulsion coated papers had better mechanical properties compared to the uncoated paper as a control. PE or PP coating papers showed strong oil resistance property, achieving a kit rating of 12. Those papers also had a significantly higher percentage of screen reject during the recycling process than modified acrylic coated paper which had a screen rejection rate of 6.25%. In addition an uncoated paper had similar value of a screen rejection rate. It may suggest that modified acrylic emulsion coating paper can be more easily recycled than PE or PP coating papers. The overall results of the study found that modified acrylic emulsion coating paper would be a viable alternative to suggest a possible solution to an environmental problem as well as enhancing the weak mechanical and poor gas barrier properties of the paper against moisture.