• Title/Summary/Keyword: polypropylene fiber

Search Result 578, Processing Time 0.021 seconds

Studies on Composites Using Wood and Nonwood Fibers - Effects of Polypropylene Fiber Length and Process Variables - (목질(木質)과 비목질계(非木質系) 섬유(纖維)를 활용한 복합재(複合材) 연구(硏究) - 폴리프로필렌의 섬유장(纖維長)과 공정변수(工程變數)의 영향(影響)을 중심(中心)으로 -)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.33-44
    • /
    • 1997
  • This study was executed to examine the effects of polypropylene fiber length and process variables of the composites made from wood fiber and nonwood fiber mixed formulations. As a nonwood fiber the polypropylene with 3 denier thickness of tow condition was selected and cut into each length of 0.5, 1.0, 1.5, 2.0 and 2.5cm to mix with wood fiber. And also western hemlock wood fiber for medium density fiberboard was prepared. First, to decide an adequate polypropylene mixing fiber length, the composites of 1.0g/$cm^3$ density were made from 10% polypropylene fiber by each of five lengths and 90% western hemlock fiber mixed formulations. Thereafter as the experiments of process variable, the composites applied with adequate polypropylene fiber length(1.5cm) were made from 4 density levels (0.6, 0.8, 1.0, 1.2g/$cm^3$). 3 mixed formulations of wood fiber to polypropylene fiber(95 : 5, 90 : 10, 85 : 15), and 3 mat moisture contents(5, 10, 20%). According to the results and discussions it was concluded as follows ; The physical and mechanical properties were shown improved tendency. as polypropylene fiber length was increased in the range from 0.5 to 1.5cm, but shown decreasing tendency from 2.0 to 2.5 cm. Accordingly, it was shown that polypropylene fiber length is limited to 1.5cm or less length in mixing wood fiber and polypropylene fiber by turbulent air mixing process. As the densities of wood fiber-polypropylene fiber composites were increased, the physical and mechanical properties were clearly improved. Also they were shown significantly increasement statistically between densities respectively. In the mixed formulations, physical and mechanical properties were shown only slightly improvement, as they changed from 95 : 5 to 85 : 15 in wood fiber to polypropylene fiber. Despite of increasement of mat moisture content, mechanical properties were not improved significantly but physical properties were improved somewhat in wood fiber-polypropylene fiber composites.

  • PDF

Mechanical Characteristics of Reinforced Soil(II) -Fiber Reinforced Soil- (보강 혼합토의 역학적 특성(II) -섬유 혼합토-)

  • Song, Chang Seob;Lim, Seong Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.37-42
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with polypropylene fiber, and to confirm the reinforcing effects with admixture such as polypropylene fiber. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and polypropylene fiber reinforced soil. In order to determine proper moisture contents and mixing ratio, pilot test was carried out for natural soil and PFRS(polypropylene fiber reinforced soil). And the mixing ratio of mono-filament fiber and fibrillated polypropylene fiber admixture was 0.1%, 0.3%, 0.5% and 1.0% by the weight of dry soil. From the experimental results, it was found that the optimum moisture contents(OMC) increased with the mixing ratio of fiber, but the maximum dry unit weight and the volume change was decreased with the mixing ratio. It means that the improvement of the workability and the reduction of the weight of embankment was done by the addition of the polypropylene fiber. And, from the compression test results, it was found that the addition of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil was more effective than the mono-filament polypropylene fiber reinforced soil.

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(I) - Effects of Process Variables on the Physical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(I) - 공정변수가 복합재의 물리적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 1996
  • Effects of process variables were evaluated in physical properties of the wood fiber-thermoplastic fiber composites using nonwoven web method. Turbulent air mixer using compressed air was employed to mix wood fiber with two types of thermoplastic polypropylene and nylon 6 fibers. The optimal hot press temperature and time were found to be $190^{\circ}C$ and 9 minutes in wood fiber-polypropylene fiber composite and to be $220^{\circ}C$ and 9 minutes in wood fiber-nylon 6 fiber composite. As the density of wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite increased, the physical properties were improved The density appeared to be the most significant factor on physical properties in the statistical analysis. The composition ratio of polypropylene or nylon 6 fiber to wood fiber was considered not to be statistically significant factor. The thickness swelling decreased somewhat in wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite as the content of synthetic fiber increased. As the increase of mat moisture content, dimensional stability was improved in wood fiber-polypropylene fiber composite but not in wood fiber-nylon 6 fiber composite.

  • PDF

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(II) - Effect of Process Variables on The Mechanical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(II) - 공정변수가 복합재의 기계적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.58-65
    • /
    • 1997
  • This research was carried out to evaluate the effect of process variables on mechanical properties of the wood fiber-thermoplastic fiber composites by turbulent air mixing method. The turbulent air mixer used in this experiment was specially designed in order to mix wood fiber and thermoplastic polypropylene or nylon 6 fiber, and was highly efficient in the mixing of relatively short plastic fiber and wood fiber in a short time without any trouble. The adequate hot - pressing temperature and time in our experimental condition were $190^{\circ}C$ and 9 minutes in 90% wood fiber - 10% polypropylene fiber composite and $220^{\circ}C$ and 9 minutes in 90% wood fiber 10% nylon 6 fiber composite. Both in the wood fiber - polypropylene fiber composite and wood fiber- nylon 6 fiber composite, the mechanical properties improved with the increase of density. Statistically, the density of composite appeared to function as the most significant factor in mechanical properties. Within the 5~15% composition ratios of polypropylene or nylon 6 fiber to wood fiber, the composition ratio showed no significant effect on the mechanical properties. Bending and tensile strength of composite, however, slightly increased with the increase of synthetic fiber content. The increase of mat moisture content showed no significant improvement of mechanical properties both in wood fiber - polypropylene fiber composite and wood fiber nylon 6 fiber composite. Wood fiber - nylon 6 fiber composite was superior in th mechanical strength to wood fiber-polypropylene fiber composite, which may be related to higher melt flow index of nylon 6 fiber(22g/10min) than of polypropylene fiber(4.3g/10min).

  • PDF

Characteristics of Compaction and Stregth for Synthetic Fiber Reinforced Soils (섬유 보강토의 다짐 및 강도 특성)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.93-98
    • /
    • 1999
  • The results of an experimental investigation on the characteristics of compaction and compressive strength of polypropylene fiber reinforced soil are presented in this paper. This study has been performed to obtain the physical properties of PFRS(polypropylene fiber reinforced soil) such as strain-stress relationships, OMC(optimum moisture contents) and ${\gamma}$dmax (maximum dry unit weight), with four different contents (i.e., 0.1%, 0.3%, 0.5% and 1.0% weights ) of mono-filament and fibrillated polypropylene fibers. From the compaction test results, it is found that OMC increased with the contents ratio of fiber, but ${\gamma}$dmax decreased. It means that the improvement of the workability and the reduction of the weight of embankment structures by the asddtion of the polypropylene fiber. And, from the compression test results, it is found that the additon of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil is more effective than the mono-filament polypropylene fiber reinforced soil.

  • PDF

Mechanial and Drying Shrinkage Properties of Polypropylene Fiber Reinforced High Flow Concrete (폴리프로필렌 섬유보강 고유동 콘크리트의 역학적 및 건조수축 특성)

  • Noh , Kyung-Hee;Sung , Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.79-85
    • /
    • 2004
  • This study was performed to evalute mechanical and drying shrinkage properties of polypropylene fiber reinforced high flow concrete. The compressive strength and drying shrinkage ratio were increased with increasing the binder volume ratio and decreased with increasing the content of polypropylene fiber. The splitting tensile strength was increased with increasing the binder volume ratio and the content of polypropylene fiber. The flexural strength was increased with increasing the binder volume ratio and increased by the polypropylene fiber content 0.4%, but above the polypropylene fiber content 0.6% was decreased. This concrete can be used for high flow concrete.

Effect of Fiber Volume Fraction on Bond Properties of Structural Synthetic Fiber in Polypropylene Fiber Reinforced Cement Composites (폴리프로필렌섬유보강 시멘트 복합재료에 정착된 구조용 합성섬유의 부착거동에 미치는 섬유 혼입률의 효과)

  • Lee, Jin Hyeong;Park, Chan Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.125-135
    • /
    • 2011
  • The bond properties between polypropylene fiber reinforced cement composites and structural synthetic fiber have been investigated. in this paper. Three levels of polypropylene fibers volume fraction were used, 0.10%, 0.15%, and 0.20% in a series of Dog-bone pull out tests. The bond strength between structural synthetic fiber and polypropylene fiber reinforced cement composites increases with the volume fraction of polypropylene fiber, but the bond strength decreases above the amount of 0.20% by volume of polypropylene fiber reinforced cement composites. Also, the addition of polypropylene fiber a significant improved the interface toughness and the frictional resistance, The microstructure of structural synthetic fiber surface was investigated after the pullout test. The scratched of structural synthetic fiber increased with the polypropylene fiber volume fraction.

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

Mechanical properties of steel-polypropylene fiber reinforced fully recycled coarse aggregate concrete

  • Weiwei Su;Zongping Chen;Haoyu Liao;Dingyuan Liu;Xingyu Zhou
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.127-139
    • /
    • 2023
  • In this study, the steel fiber and the polypropylene fiber were used to enhance the mechanical properties of fully recycled coarse aggregate concrete. Natural crushed stone was replaced with recycled coarse aggregate at 100% by volume. The steel fiber and polypropylene fiber were used as additive material by incorporating into the mixture. In this test two parameters were considered: (a) steel fiber volume ratio (i.e., 0%, 1%, 1.5%, 2%), (b) polypropylene fiber volume ratio (i.e., 0%, 0.1%, 0.15%, 0.2%). The results showed that compared with no fiber, the integrity of cubes or cylinders mixed with fibers after failure was better. When the volume ratio of steel fiber was 1~2%, the width of mid-span crack after flexural failure was 5~8 mm. In addition, when the volume ratio of polypropylene fiber was 0.15%, with the increase of steel fiber content, the static elastic modulus and toughness of axial compression first increased and then decreased, and the flexural strength increased, with a range of 6.5%~20.3%. Besides, when the volume ratio of steel fiber was 1.5%, with the increase of polypropylene fiber content, the static elastic modulus decreased, with a range of 7.0%~10.5%. The ratio of axial compression toughness first increased and then decreased, with a range of 2.2%~8.7%. The flexural strength decreased, with a range of 2.7%~12.6%. On the other hand, the calculation formula of static elastic modulus and cube compressive strength of fully recycled coarse aggregate with steel-polypropylene fiber was fitted, and the optimal fiber content within the scope of the test were put forward.