• Title/Summary/Keyword: polyphenylene

Search Result 49, Processing Time 0.033 seconds

Preparation and Gas Characterization of Poly(phenylene oxide) Containing Imidazolium (이미다졸륨을 포함하는 폴리페닐렌옥사이드 고분자 제조 및 기체 특성평가)

  • Son, Tae Yang;Jo, Jin Woo;Kim, Ji Hyeon;Kim, Tae Hyun;Tocci, Elena;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.528-535
    • /
    • 2017
  • In this study, halogen element was introduced into polyphenylene oxide polymer using bromination reaction, and then halogen element was replaced with imidazolium. Imidazolium corporated polyphenylene oxide polymer was synthesized and the synthesis was confirmed by various instrumental characterization. In addition, gas permeation properties of $O_2$, $N_2$, $CO_2$ were studied with different imidazolium contents. As the content of imidazolium increased, the ion exchange capacity increased and the mechanical strength decreased. The gas permeance showed a tendency to decrease slightly with increaing imidazolium contents. Whereas, it was confirmed that the tendency of $CO_2/N_2$ ideal selectivity increased as the imidazolium contents increased.

Low Cycle Fatigue of PPS Polymer Injection Welds ( II ) - Fiber Orientation and Fracture Mechanism -

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.836-843
    • /
    • 2003
  • The polymer composites contain numerous internal boundaries and its structural elements have different responses and different resistances under the same service environment. Fatigue phenomenon is much more complex in composites than homogeneous materials. An understanding of the fracture behavior of polymer composite materials subjected to constant and cyclic loading is necessary for predicting the life time of structures fabricated with polymers. There is a need to acquire a better understanding of the fatigue performance and failure mechanisms of composites under such conditions. Therefore, in this study the analyses of fiber orientation and fracture mechanism for low cycle fatigue crack have been studied by SEM and LM for observing the ultrathin sections.

The Electrical Characteristic of Composite Film for Lithium Secondary Battery by adding DMSO (DMSO 첨가에 따른 리튬이차전지용 복합필름의 전기적 특성)

  • 박수길;김종진;이창진;김상욱;김현후;임기조;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.269-272
    • /
    • 1997
  • The Lithium ion secondary battery has been developed for high energy density of portable electrical device and electronics. Among the many conductive polymer materials, the positive active film for Li polymer battery system was synthesized successfully from polyphenylene diamine(PPD) by chemical polymerization in our lab. And PPD-DMcT(2, 5-dimercapto-1, 3, 4-thi-adiazole) composite flim conductive material, at high temperature was also prerared with the addition of dimethylsulfoxide(DMSO). The surface morphology and thermal stability of prepared composite flim was carried out by using SEM and TGA, respectively. Electrochemical and electrical conductivity of composite flim were also discussed by cyclic voltammetry and four-probe method in dry box(<27pm). And the electrode reaction mechanism was detected and analyzed from the half cell unit battery system.

  • PDF

Deformation Behavior in Compatible Polymer Blends (고분자블렌드에서의 변형거동)

  • 전병철
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.121-121
    • /
    • 1992
  • Deformation behavior of compatible polymer blends was studied using scanning electron, optical, and transmission electron microscopies. Four different compatible systems were employed and charaterized in this investigation : polystyrene(PS) and polyphenylene oxide(PPO), polystyrene(PS) and polyvinlmethylether(PVME), polystyrene(PS) and poly $\alpha$-methylstyrene(P$\alpha$MS). Individual craze and shear deformation zone microstructures were examined by transmission microscopy (TEM). For TEM observations, specimens deformed in-situ on a TEM grid were utilized. Quantiative analysis of these crazes and shear deformation zones was obtained from the nicrodensitometry of the TEM negatives in the manner developed by Lauterwasser and Kramer. Microdensitometry resulys showed that the fibril extension ratio decreased as the PPO content increased in the PS/PPO blends, and finally, for 100% PPO, only shear deformation zones were observed. For the PS/PVME blends, the ribril extension ratio also decreased as the VME content increased. For the PS/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased, For the PPO/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased.

  • PDF

Blends of semi-rigid substituted poly(p-phenylene) with BPA-polycarbonate

  • Dijkstra Dirk J.;Karbach Alexander;Malkovich Nick
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.364-364
    • /
    • 2006
  • The rheological properties of Parmax 1200, a new semi-flexible substituted polyphenylene, were investigated. The reported high stiffness of the material was confirmed. The rheological measurements proved that, despite the very high stiffness of the molecules, Parmax showed shear thinning and that, although the viscosity is very high and the melt is highly elastic, the polymer can be extruded in the melt. A worm-like morphology was detected in AFM and TEM. This morphology could explain the reported mechanical and rheological behaviour. The compatibility with flexible chain polymers (e.g. polycarbonate) could also be explained by the worm-like morphology.

  • PDF

Simulation for Membrane Reactor using Heteropoly Acid Catalyst (헤테로폴리산 촉매를 이용한 고분자막반응기 모사)

  • 최준선;김용헌;이화영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.53-60
    • /
    • 1997
  • 1. 서론 : 촉매막기술은 반응과 분리공정을 동시에 하나의 장치에서 수행할 수 있기 때문에 한 개의 공정을 줄일 수 있는 효과적인 에너지 절약형 기술이다. 생성물중의 적어도 하나가 선택적으로 막을 통해 투과되기 때문에 가역반응의 경우에는 비가역반응에 가까운 거동을 보이게 된다[1-5]. 본 연구는 12-텅스토인산($H_3PW_{12}O_{40}$)를 촉매로 사용하고 막반응시를 비활성촉매막반응기(IMRCF, Inert membrane reactor with catalyst in the feed side)형태, 막으로는 PSF(Polysulfone), PPO(Polyphenylene Oxide)를 사용하여 MTBE(Methyl tert-butyl ether)분해반응을 모사하였다. 막반응기에서 생성된 생성물을 선택적으로 분리해냄으로 인하여 전환율은 고정층보다 증가하였는데 반응온도가 증가할수록, 반응물의 분압은 낮을수록 증가하였다. 반응온도가 높아짐에 따라 막반응기에서의 전환율은 고정층반응에서 나타나는 전환율과의 차이가 줄어드는 것을 볼 수 있었다. 위와같은 결과에 따라서 MTBE 반응물의 분해로 생성되는Isobutene의 수율이 90$\circ$C 이상의 반응온도에서 촉매/반응물비에 대한 최적조건이 나타나는 것을 알 수 있었다.

  • PDF

Low Cycle Fatigue of PPS Polymer Injection Welds (I) -Fatigue Crack Behavior-

  • Song, Jun-Hee;Lim, Jae-Kyoo;Kim, Yon-Jig;Kim, Hong-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.647-653
    • /
    • 2003
  • An important class of short-fiber reinforced composites is the sheet molding compound, which is recently developed and currently used in many engineering applications. Fatigue failure of the composites is a subject of major concern in design and cyclic crack propagation is of particular significance in the fatigue life prediction of short fiber composites. However, research on the fatigue behavior of polymer injection weld, especially short glass fiber-filled polymer injection weld, has not been carried out. In this study the analyses of the fatigue crack growth behaviors at weld line and in the bulk are performed based on low cycle fatigue test.

Properties of Blends of a Thermotropic Liquid Crystalline Polymer with Polyphenylene Sulfide (열방성 액정 고분자와 폴리페닐렌 설파이드와의 블렌드에 관한 물성)

  • 김연희
    • The Korean Journal of Rheology
    • /
    • v.6 no.2
    • /
    • pp.96-103
    • /
    • 1994
  • 열방성 액정 고분자인 백트라와 폴리페닐렌 설파이드와의 블렌드를 주사전자현미경, 시차주사 열분석기, 그리고 모세관 레오미터를 이용하여 전 조성 범위에 대하여 연구하였다. 블렌드의 결정화와 용융에 관한연구결과로부터 두 고분자 사이에는 상호작용이 없음을 알수 있다. 이는 두 개의 상이 완전히 분리되기 때문이다. 폴리페닐렌설파이드를 많이 포함하고 있는 블렌드의 점도는 상당히 감소되었으며 이는 높은 전단속도에서 열방성 액정 고분자가 섬유구조를 갖기 때문이다. 열방성 액정고분자의 섬유구조는 열방성 액정 고분자가 섬유구 조를 갖기 때문이다. 열방성 액정 고분자의 섬유구조는 열방성 액정 고분자와 등방성상과의 점도비와 전단속도에 의해 영향을 받음을 알수 있다.

  • PDF

A Constitutive Model for the Rate-dependent Deformation Behavior of a Solid Polymer (속도 의존적인 폴리머 거동에 대한 구성적 모델)

  • Ho, K.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.216-222
    • /
    • 2013
  • Solid polymers exhibit rate-dependent deformation behavior such as nonlinear strain rate sensitivity and stress relaxation like metallic materials. Despite the different microstructures of polymeric and metallic materials, they have common properties with respect to inelastic deformation. Unlike most metallic materials, solid polymers and shape memory alloys (SMAs) exhibit highly nonlinear stress-strain behavior upon unloading. The present work employs the viscoplasticity theory [K. Ho, 2011, Trans. Mater. Process. 20, 350-356] developed for the pseudoelastic behavior of SMAs, which is based on unified state variable theory for the rate-dependent inelastic deformation behavior of typical metallic materials, to depict the curved unloading behavior of polyphenylene oxide (PPO). The constitutive equations are characterized by the evolution laws of two state variables that are related to the elastic modulus and the back stress. The simulation results are compared with the experimental data obtained by Krempl and Khan [2003, Int. J. Plasticity 19, 1069-1095].

Preparation and Properties of Polymer PTC Composites for Process Safety (공정안전용 Polymer PTC 소재의 제조 및 특성)

  • 강영구;조명호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.101-108
    • /
    • 2003
  • Polymeric positive temperature coefficient(PTC) composites have been prepared by incorporating carbon black(CB) into high density polyethylene(HDPE), polyphenylene sulfide(PPS) and polybutylene terephthalate(PBT) matrices. A PTC effect was observed in the composite, caused by the large thermal expansion due to He consecutive melting of HDPE, PPS and PBT crystallites. This theory is based upon the premise that the PTC phenomenon is due to a critical separation distance between carbon particles in the polymer matrix at the higher temperature. The influence of PTC characteristics of the PPS/CB composite can be explained by DSC result. HDPE, one of prepared composition, exhibit the higher performance PTC behavior that decreaseing of negative temperature coefficient(NTC) effect and improved reproducibility by chemically crosslinking. Also, PBT/CB and PPS/CB composites exhibit the higher PTC peack temperature than HDPE/CB PTC composite, individually $200^{\circ}C$ and $230^{\circ}C$. These PTC composite put to good use in a number of safety application, such as self$.$controlled heater, over-current protectors, auto resettable switch, high temperature proctection sensor, etc.