• Title/Summary/Keyword: polyphase

Search Result 125, Processing Time 0.021 seconds

Paleostress Reconstruction in the Tertiary Basin Areas in Southeastern Korea (한반도 동남부 제3기 분지지역에서의 고응력장 복원)

  • Moon, Tae-Hyun;Son, Moon;Chang, Tae-Woo;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.230-249
    • /
    • 2000
  • Southeastern Korean Peninsula has undergone the polyphase deformations according to the changes of regional tectonic settings during the Cenozoic. Through analyses of more than 600 fault-slip data gathered in the study area, five tectonic events are revealed as the followings: (I) NW-SE transtension, (II) NW-SE transpression, (III) NE-SW pure or radial extension, (IV) NNE-SSW transpression, (V) NE or ENE-WSW transpression. Event I was induced by the pull-apart type extension of the East Sea during 24-16 Ma, which resulted in the NW-SE extension of the Tertiary Basins in SE Korea. Event II was resulted from the collision of SW Japan and Izu-Bonnin Arc (or Kuroshio Paleoland) on the Philippine Sea Plate at ${\sim}$ 15 Ma, which stopped the extension of the Tertiary Basins and originated the uplift of fault blocks in and around SE Korean Peninsula. It was continued until ${\sim}$ 10 Ma. Event III is interpreted as the post-tectonic event after the block-uplifts due to the event II, which indicates a temporal lull in activity of the Philippine Sea Plate since 10 Ma. Event IV was originated from the resumption in activity of the Philippine Sea Plate which was restarted to move toward north at ${\sim}$ 6 Ma. The event made the EW compressional structures behind SW Japan as well as in the Korea Straits, and thus the block-uplifts in SE Korea was resumed again. Lastly, event V was resulted from the gradual decrease in influence of the Philippine Sea Plate and the cooperative compression due to the subduction of the Pacific Sea Plate and the collision of the Indian Plate since 5-3.5 Ma, which generated the NS compressional structures in the offshore along the eastern coast of the Korean Peninsula and thrust up the fault-blocks toward west. This event is continuing so far, and thus is making the active faultings resulting in the present earthquakes of the Korean Peninsula.

  • PDF

Structural Analysis of the Danyang Area, Danyang Coalfield, Korea (단양지역의 지질구조)

  • Kim, Jeong Hwan;Koh, Hee Jae
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.61-72
    • /
    • 1992
  • The Danyang area consists of the thrust and folded sedimentary rocks of Paleozoic and Mesozoic Era. The area is bounded by major tectonic units which are the Gagdong Thrust to the west and the Okdong Fault to the east. According to the structural analyses, the area is affected by polyphase deformation. This study establishes deformational sequence in the area. Mylonite zone along the Okdong Fault corresponds to the first generation of structures ($D_1$). $D_1$-structures are discrete shear zone in the Jangsan Formation and bedding parallel extensional deformation in the Cambro-Ordovician sequences. $D_2$-structures were formed prior to the sedimentation of the Jurassic Bansong Group, which are the NW-trending fold and linear structures. After sedimentation of the Bansong Group, the area is strongly affected by the Daebo Orogeny which produces NE-trending thrusts, folds and linear structures. Earlier structures were tightened and rotated toward NE. Some thrust faults did not propagate into the Bansong Group. It is suggested either the Bansong Group acted as a decoupling horizon or rest on unconformably on the thrust faults. The area is weakly affected by $D_4$-event of which structures are E-W trending folds and faults. The Jugryeong Fault clearly cut the earlier folds and thrust faults. The rocks within the fault zone were sliced and rotated during the strike-slip movements. Block rotation and transpressional features can be commonly observed.

  • PDF

Characterization of Inclusions in Amethysts from Eonyang, Korea (언양자수정의 내포물에 관한 연구)

  • Kim, Won-Sa;Shin, Hyun-Sook;Lee, Sun-Sook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.83-93
    • /
    • 1988
  • Amethysts in Eonyang Granite of Woolju-Kun, Kyungnam Province are frequently parallelly grown on top of preexisting smoky quartz crystallized on milky and colorless quartz crystals, which, as a whole, resemble "mushroom" in outer appearance. Fluid inclusions in the amethysts may be grouped into (1) gaseous inclusions (G>L), (2) liquid inclusions (L>G), (3) $L_{CO_2}$-bearing inclusions (L+G+$L_{CO_2}$), (4) halite-bearing inclusions (L+G+halite), (5) multiphase inclusions (L+G+halite+sylvite${\pm}$opaque mineral). In addition, euhedral K-feldspars and acicular hematite crystals are included in colorless-milky quartz and deep purple-red quartz, respectively. Filling temperatures of each type of fluid inclusions were measured as follows: $320{\sim}560^{\circ}C$ for gaseous inclusions; $100{\sim}290^{\circ}C$ for liquid inclusions; $200{\sim}310^{\circ}C$ for $L_{CO_2}$-bearing inclusions; $300{\sim}430^{\circ}C$ for halite-bearing inclusions; and $370{\sim}430^{\circ}C$ for polyphase inclusions. The finished-gem amethysts from Eonyang may be distinguished from Brazilian amethysts by the difference in filling degree of gaseous inclusions by the presence of hematite aciculae, and of $L_{CO_2}$-bearing inclusions, and also by the absence of Zebra-striation structure. They may also be differentiated from synthetic amethysts by presence of straight color banding, solid inclusions, and $L_{CO_2}$-bearing inclusions which are not found in synthetic materials.

  • PDF

Sturctural Geometry of the Pyeongchang-Jeongseon Area of the Northwestern Taebaeksan Zone, Okcheon Belt (옥천대 북서부 태백산지역 평창-정선일대 지질구조의 기하학적 형태 해석)

  • Jang, Yirang;Cheong, Hee Jun
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.541-554
    • /
    • 2019
  • The Taebaeksan Zone of the Okcheon Belt is a prominent fold-thrust belt, preserving evidence for overlapped polyphase and diachronous orogenic events during crustal evolution of the Korean Peninsula. The Pyeongchang-Jeongseon area of the northwestern Taebaeksan Zone is fault-bounded on the western Jucheon and southern Yeongwol areas, showing lateral variations in stratigraphy and structural geometries. For better understanding these geological characteristics of the northwestern Taebaeksan Zone, we have studied the structural geometry of the Pyeongchang-Jeongseon area. For this, we have firstly carried out the SHRIMP U-Pb age analysis of the age-unknown sedimentary rock to clarify stratigraphy for structural interpretation. The results show the late Carboniferous to middle Permian dates, indicating that it is correlated to the Upper Paleozoic Pyeongan Supergroup. In addition to this, we interpreted the geometric relationships between structural elements from the detailed field investigation of the study area. The major structure of the northwestern Taebaeksan Zone is the regional-scale Jeongseon Great syncline, having NE-trending hinge with second-order folds such as the Jidongri and Imhari anticlines and the Nambyeongsan syncline. Based on the stereographic and down-plunge projections of the structureal elements, the structural geometry of the Jeongseon Great syncline can be interpreted as a synformal culmination, plunging slightly to the south at its southern area, and north at the northern area. The different map patterns of the northern and southern parts of the study area should be resulted in different erosion levels caused by the plunging hinges. Considering the Jeongseon Great syncline is the major structure that constrains the distribution of the Paleozoic strata of the Pyeongchang and Jeongseon areas, the symmetric repetition of the lower Paleozoic Joseon Supergroup in both limbs should be re-examined by structural mapping of the Hangmae and Hoedongri formations in the Pyeongchang and Jeongseon areas.

Structural characteristics of Humboldt Range, northwest Nevada, U. S. A. (미국 북서 네바다주 험볼트 산맥의 구조분석)

  • 정상원
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.131-148
    • /
    • 1999
  • Characteristics and complex structures in the northwest Nevada, U.S.A. are de-veloped due to relative tectonic movement of major tectonostratigraphic terranes. Theresearch area is composed of autochthonous rocks of both Early Triassic Koipato Group and Middle Triassic Star Peak Group, which is located in the Humboldt Range, northwest Nevada, U.S.A. The present research is focused on deformation history, related fabric development, and state of regional paleostress during the Jurassic to Late Cretaceous. The Triassic autochthonous rocks in the Humboldt Range, Nevada, U.S.A. display polyphase deformation due to E- to ESE-directed tectonic transport of the Fencemaker allochthon over autochthonous rocks of the Humboldt Range. Structures involving the Mesozoic foreland deformation are development of intense foliation, different styles of folds, minor thrusts, transposed layering, and strong mylonitization. These tectonic structures are mostly developed along the western flank of the Humboldt Range, and are reported as the first deformation of the Mesozoic foreland in the Humboldt Range, Nevada, U.S.A. Regional principal stress(${\sigma}_1$) is interpreted to be E to ESE between the Jurassic and Early Cretaceous on the basis of orientations of strongly developed $D_1$ structures. The deformation during the Middle to Late Cretaceous, is characterized by development of consistent N- to NNE-trending metamorphic quartz veins, and shear zones parallel to pre-existing $D_1$ foliation. Orientations of metamorphic quartz veins as well as other kinematic indicators are N to NNE and are interpreted as those of regional principal stress(${\sigma}_1$) during the Late Cretaceous. The sense of shear applied in the Humbololt Range is dextral and is caused by reactivation of early-formed $D_1$ structures. These results reflect counterclockwise rotation of regional principal paleostress in the Humboldt Range from the Jurassic to Late cretaceous. Finally, development of both shear band cleavage and S/C mylonitic fabrics indicates that the shear zones in the Humboldt Range reflect involvement of enhanced non-coaxial flow during bulk shortening in mylonitic formation.

  • PDF