• Title/Summary/Keyword: polyols

Search Result 137, Processing Time 0.02 seconds

Purification and Characterization of an Extracellular Alkaline Protease from Aspergillus niger C-15

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.32 no.2
    • /
    • pp.74-78
    • /
    • 2004
  • An alkaline protease produced by Aspergillus niger C-15 was purified and characterized. The enzyme was purified 19.41-fold with a specific activity of 74150 U/mg and a recovery of 34.4% by gel filtration and ion exchange chromatography. The molecular weight of the enzyme was estimated to be 34 kDa. The optimum pH and temperature for the protease activity were pH 8.0 and $60^{\circ}C$, respectively. The enzyme activity inhibited by EDTA suggests that the preparation contains a metalloprotease. The enzyme activity of the metalloprotease was completely inhibited by 5 mM $HgCl_2$ and $FeCl_3$, while partially inhibited by $CuSO_4$, and $MnCl_2$. When polyols such as glycerol, mannitol, sorbitol and xylitol, were added to the reaction medium, most polyols tested enhanced protease activity. Especially, glycerol showed the highest effect. The alkaline metalloprotease was stable at high temperature and retained more than 90% of the initial activity at $60^{\circ}C$ and 86.4% under addition of glycerol.

Synthesis of Polyurethane Emulsion Modified with Phosphorus Compounds (인 변성 폴리우레탄 에멀젼의 합성에 관한 연구)

  • Wu, Jong-Pyo;Cho, Sun-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.275-282
    • /
    • 2003
  • Aqueous polyurethane dispersion was synthesized using phosphorus compound which received significant attention for the replacement of halogenated flame retardants. In this study, polyols which have phosphorus moity in their structural unit were synthesized by two-step polycondensation reaction using dimethyl phenylphosphonate, ethylene glycols. adipic acid, and 1,4-butanediol. In the next step, polyurethane dispersion was prepared using these polyols, isophorone diisocyanate with dimethyl propionic acid. The particle size of polyurethane latex was reduced from 347 nm to 240 nm with increasing DMPA content. It was observed that the LOI values of prepared coatings increased from 27% to 35% with increasing phosphorus content.

Construction of an Efficient Mutant Strain of Trichosporonoides oedocephalis with HOG1 Gene Deletion for Production of Erythritol

  • Li, Liangzhi;Yang, Tianyi;Guo, Weiqiang;Ju, Xin;Hu, Cuiying;Tang, Bingyu;Fu, Jiaolong;Gu, Jingsheng;Zhang, Haiyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.700-709
    • /
    • 2016
  • The mitogen-activated protein kinase HOG1 (high-osmolarity glycerol response pathway) plays a crucial role in the response of yeast to hyperosmotic shock. Trichosporonoides oedocephalis produces large amounts of polyols (e.g., erythritol and glycerol) in a culture medium. However, the effects of HOG1 gene knockout and environmental stress on the production of these polyols have not yet been studied. In this study, a To-HOG1 null mutation was constructed in T. oedocephalis using the loxP-Kan-loxP/Cre system as replacement of the targeted genes, and the resultant mutants showed much smaller colonies than the wild-type controls. Interestingly, compared with the wild-type strains, the results of shake-flask culture showed that To-HOG1 null mutation increased erythritol production by 1.44-fold while decreasing glycerol production by 71.23%. In addition, this study investigated the effects of citric acid stress on the T. oedocephalis HOG1 null mutants and the wild-type strain. When the supplementation of citric acid in the fermentation medium was controlled at 0.3% (w/v), the concentration of erythritol produced from the wild-type and To-HOG1 knockout mutant strains improved by 18.21% and 21.65%, respectively.

Synthesis and Characteristics of Photo-crosslinkable Hydrogel for Microbial Immobilization (미생물 고정화를 위한 광경화성 하이드로겔의 합성과 특성)

  • Kim, Cho Woong;Lee, Jung Bock;Kim, Du Hyun;Hwang, Jung Min;Cho, Chong Su;Choi, Young Hoon;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.852-856
    • /
    • 1999
  • The objective of this study was to prepare hydrogel beads which were useful microbial immobilization to remove nitrogen and phosphorous in the industrial wastewater. Two different polyols(PEG, PTMG) terminated with photo-crosslinkable methacrylate groups were synthesized. Structures of the prepolymers and the UV cured hydrogels were characterized by using $^1H$-NMR and FT-IR spectroscopy. Water content, mechanical strength and pore sizes of the hydrogels having different MW of polyols and different ratios of PEG/PTMG were investigated. Hydrogels prepared from PEG(MW1000) only or the mixture of PEG(MW1000) and PTMG(MW2900) with 7:3 by weight were considered as potential candidates for the matrix for the immobilization of microorganism.

  • PDF

Conversion of Cellulose into Polyols over Noble Metal Catalysts Supported on Activated Carbon (활성탄에 담지된 귀금속 촉매를 이용한 셀룰로우스의 폴리올로의 전환)

  • You, Su-Jin;Kim, Saet-Byul;Kim, Yong-Tae;Park, Eun-Duck
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • In this work, the conversion of crystalline cellulose into polyols in the presence of hydrogen was examined over noble metal (Pt, Ru, Ir, Rh, and Pd) catalysts supported on activated carbon. For comparison, Pt/${\gamma}-Al_2O_3$ and Pt/H-mordenite were also investigated. Several techniques: $N_2$ physisorption, X-ray diffraction(XRD), inductively-coupled plasma-atomic emission spectroscopy (ICP-AES), temperature-programmed reduction with $H_2$ ($H_2$-TPR) and CO chemisorption were employed to characterize the catalysts. The cellulose conversion was not strongly dependent on the types of the catalyst used. Pt/AC showed the highest yields to polyols among activated carbon-supported noble metal catalysts, viz. Pt/AC, Ru/AC, Ir/AC, Rh/AC and Pd/AC.

How Skin Care Ingredient Concentrations Can Modulate the Effect of polyols and Oils on Skin Moisturization and Skin Surface Roughness (화장품 원료 중 폴리올, 오일 농도에 따른 피부 보습과 피부 표면 거칠기의 변화)

  • Nam, Gae-Won;Kim, Seung-Hun;Kim, Eun-Joo;Kim, Jin-Han;Chae, Byung-Guen;Lee, Hae-Kwang;Moon, Seong-Joon;Kang, Hak-Hee;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.337-342
    • /
    • 2005
  • The aim of this study was to evaluate the influence of different skin care ingredient concentrations on the effect of polyols and oils on the human skin moisturization and skin surface roughness. Polyols and oils were essential ingredients to make a skin care formulation. But these were still not understood how much concentration(s) were tested on human skin in the aspect of efficacy and sensory. We studied to examine various concentrations of ingredient by cosmetic companies using noninvasive methods. Polyols were composed of glycerol and butylene glycol (BG) as 1:1 ratio, and oils were hydrogenated polydecene, cetyl ethylhexanoate and pentaerythrityl tetraethylhexanoate (PTO(R), Stearinerie Dubois Fils Co., France) as 1:1:1 ratio. All compounds were tested $0{\sim}27%dml$ Polyols and $0{\sim}35%dml$ oils in O/W emulsions. We investigated the effect of water contents and the effect of stratum corneum roughness in forearm skin after application of compounds. Water contents of the skin measured by skin capacitance and skin surface roughness measured visual scoring of skin surface biopsy through the scanning electron microscopy. Water contents of the skin were highly related to amount of polyols (to 20%) and oils (to 12%). Correlation coefficients were 0.971 and 0.985 respectively (p<0.01), 2 h after application. Skin surface roughness was positively correlated with polyol contents in concentration dependent manner, and depend on oils up to 6%. The ratio of coefficient was 2.5 to 1 (polyol to oils) by regression analysis. Further studies will be conducted with other ingredients such as surfactants, lipids and aqueous materials, and with ether methods for noninvasive measurement.

Removal of Aqueous Boron by Using Complexation of Boric Acid with Polyols: A Raman Spectroscopic Study (폴리올과 붕산의 착화합물 형성원리를 이용한 수용액 중의 보론 제거에 관한 라만 분광학 연구)

  • Eom, Ki Heon;Jeong, Hui Cheol;An, Hye Young;Lim, Jun-Heok;Lee, Jea-Keun;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.808-813
    • /
    • 2015
  • Boron is difficult to be removed from seawater by simple RO (reverse osmosis) membrane process, because the size of boric acid ($B(OH)_3$), the major form of aqueous boron, is as small as the nominal pore size of RO membrane. Thus, the complexation of boric acid with polyols was suggested as an alternative way to increase the size of aqueous boron compounds and the complexation behavior was investigated with Raman spectroscopy. As a reference, the Raman peak for symmetric B-O stretching vibrational mode both in boric acid and borate ion (${B(OH)_4}^-$) was selected. A Raman peak shift ($877cm^{-1}{\rightarrow}730cm^{-1}$) was observed to confirm that boric acid in water is converted to borate ion as the pH increases, which is also correctly predicted by frequency calculation. Meanwhile, the Raman peak of borate ion ($730cm^{-1}$) did not appear as the pH increased when polyols were applied into aqueous solution of boric acid, suggesting that the boric acid forms complexing compounds by combining with polyols.