• 제목/요약/키워드: polyol ester base oils

검색결과 5건 처리시간 0.022초

서로 다른 모양의 가지사슬을 갖는 폴리올에스터 오일의 마모특성(I) (Wear Characteristics of Polyolester Base Oils Baying different Branch Shapes(I))

  • 한두희;마사부미마스꼬
    • Tribology and Lubricants
    • /
    • 제17권2호
    • /
    • pp.109-115
    • /
    • 2001
  • The lubricating performance of 23 kinds of polyol ester base oils 〔POEs〕 having different branch shapes was investigated by using a four ball tribometer under boundary lubrication condition. All the polyol ester base oils used in this study were made up of polyhydric alcohols of two-four valence and normal or branched fatty acids of different carbon number. The wear characteristics of polyol ester base oils are different from those of mineral oil, strongly affected by the branch shapes of fatty acids in their molecles. In particular, the polyol ester base oils having normal fatty acids such as n-octanoic acid, n-nonanoic acid etc. show much better wear performance than POEs having branched fatty acids such as 2-ethylhexanoic acid, 3,5,5-trimethyl hexanoic acid, etc. As the carbon chain length of normal fatty acids, in case of POEs of normal fatty acids, is increased, their wear rate is decreased and, in case of POEs of branched fatty acids, as the degree of branch of branched fatty acids is decreased, their wear rate is decreased. All the wear results of polyol ester base oils could be reasonably explained by comparing cohesive ability among fatty acid molecules in adsorption film by fatty acids obtained as POEs were decomposed.

환경친화적인 극성기유와 첨가제(TCP)의 상호작용모델로부터 해석된 Polyalkylene glycol 및 Polyolester Base Oil의 윤활작용 (Lubricating Performance of Polyalkylene Glycol and Polyolester Base Oils analyzed from the Model of Interaction between Environmentally adapted Polar base oils and Additive (TCP))

  • 한두희
    • Tribology and Lubricants
    • /
    • 제17권2호
    • /
    • pp.146-152
    • /
    • 2001
  • Environmentally adapted synthetic base oils of polyalkylene glycols (PAGs) and polyol esters (POEs) show a high polarity because of their functional groups containing oxygen atom. The lubricating performance of these polar base oils was investigated by using a four-ball tribometer under boundary lubrication condition. Four polyalkylene glycols and five polyol ester base oils were used as sample base oils of high polarity. A mineral oil (MO) and alkylnaphthalene (AN) were used as low polarity base oils. Tricrecylphosphate (TCP) was added to all the base oils, in the range of 10 mmol/L-2000 mmol/L, as an antiwear additive. All the TCP-for-mutated base oils showed optimum concentration characteristics for minimizing wear. The order of optimum concentration of all the base oils was in a good accordance with the order of relative stability of TCP in base oils. The interaction model on solvation between additive and different polar base oils can expect the stability order of TCP. Thus, the model on solvation can explain well the order of optimum concentration of all the base oils, by using the effect of polarity (dielectric constant, $\varepsilon$) and molecular size (molecular weight, MW) of them on stability of TCP in polar base oils. Finally, a good correlation of the optimum concentration for all the base oils was obtained when it was arranged as a function of C∝(M $W_{Base Oil}$/M $W_{TCP}$)$^{-2}$.71/.($\varepsilon$$_{Base Oil}$)$^{3.38}$ by these two parameters.s..

환경친화적인 합성기유 후보물질로서의 몇가지 폴리올에스터 오일의 가수분해속도 비교 (Comparison of the Hydrolysis Rate of Several Polyol Ester Oils as a Candidate for Environmentally Adapted Synthetic Base Oil)

  • 한두희;마사부미마스꼬
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.162-177
    • /
    • 2001
  • 분자구조가 서로 다른 7종의 폴리올에스터 오일에 대한 가수분해속도가 측정되었다. 사용된 폴리올에스터는 2가 및 4가의 다가알콜과 서로 다른 탄소수의 직쇄 흑은 분기지방산으로 합성된 다가에스터 화합물이며, 이들의 가수분해반응은 p-톨루엔설폰산을 촉매로 사용하는 온건한 산성조건하에서 수행되었다 폴리올에스터 오일의 가수분해과정에서 생성되 는 부분에스터와 다가알콜 및 지방산 등의 구조가 확인되었고 반응시간의 경과에 따른 가수분해 생성물들의 농도가 측정되었다. 각 반응단계의 속도상수는 속도식과 실험적으로 얻은 각 화합물들의 농도로부터 최소제곱법에 의해 구하였고, 얻어진 가수분해 속도상수가 서로 비교되었다. 폴리올에스터 오일의 가수분해 속도는 지방산의 분자구조에 가장 크게 영향을 받는다. 즉, 직쇄지방산에 의한 폴리올에스터 오일은 분기지방산에 의한 폴리올에스터 오일보다 가수분해속도가 매우 마르며, 분기지방산에 의한 폴리을에스터 오일 중에서는 가지사슬의 모양과 위치가 가수분해속도에 영향을 미치는 것으로 확인되었다. 본연구에서 사용된 7종의 폴리올에스터 오일에 대한 가수분해속도는 물분자가 폴리올에스터 오일의 카르보닐 탄소를 공격할 때 인접한 가지사슬에 의한 입체장애효과를 비교함으로써 효과적으로 설명할 수 있다.

  • PDF

서로 다른 모양의 가지사슬을 갖는 폴리올에스터 오일의 마모특성으로부터 해석된 윤활작용 메커니즘(II) (Lubricating Mechanism Analyzed from Wear Characteristics of Polyolester Base Oils Haying different Branch Shapes(II))

  • 한두희;마사부미마스꼬
    • Tribology and Lubricants
    • /
    • 제17권3호
    • /
    • pp.171-178
    • /
    • 2001
  • In order to elucidate the lubricating mechanism of polyolester base oils [POEs], the wear characteristics of 27 kinds of polyolester base oils including mixed POEs were investigated. Their wear results were discussed in terms of the effect of molecular structure on wear performance and compared with those of mineral oil. In addition, the adsorption ability of POEs to reduced iron and their hydrolysis rates were measured and the effect of their molecular structures on the adsorptivity and hydrolysis rate of POEs was discussed, respectively. Finally, the lubricating mechanism anlyzed from these results of wear characteristics, adsorptivity and hydrolysis rate was proposed. That is to say, POEs are firstly adsorbed to friction surface and decomposed by hydrolysis or thermal degradation. Fatty acids obtained by degradation of POEs form adsorption film on friction surface. The larger become cohesive ability among fatty acid molecules in the adsorption film, the better gets the wear performance of POEs.

Polyolester base oils과의 상호작용에 의한 Organic Phosphates계 내하중첨가제의 마모방지 성능 (The antiwear performance of several organic phosphates from the aspect of interaction between polyolester base oil and additive)

  • 한두희
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.189-194
    • /
    • 1999
  • The antiwear performance of several organic phosphates ,such as tricrecylphosphate(TCP), tributylphosphate(TBP), diphenylhydrogenphosphate(DPHP) ,dissolved in polyol ester based oils is studied. These organic phosphates are well known for antiwear additive for lubricating oil that produce reacted surface protective film. These antiwear additives can drastically reduce wear with their concentration increasing, because the amount of additive adsorbed on metal sur(ace increases. But in the higher concentration region, the wear is increased by excessive and corrosive reaction of the metal surface with these additives. That is to say, there is an optimum concentration for minimum wear. The optimum concentration was different with the kinds of base oils and additives. Different polyolesters showed different optimum concentrations of the additive. The order of optimum concentration among the polyolesters was different with different phosphates. The order of the optimum concentration is shown that the effect of the concentration of additives on the antiwear performance. It can be explained by the interaction between additives and base oils using the solubility parameter.

  • PDF