• Title/Summary/Keyword: polynuclear metal complex

Search Result 3, Processing Time 0.021 seconds

The role of chemical bond as the preparation of polynuclear metal dendritic molecule for PDD or PDT

  • Choi, Chang-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.391-393
    • /
    • 2022
  • The preparation of polynuclear metal dendritic molecule for photodynamic diagnosis(PDD) or photodynamic therapy(PDT) has been interested on design and synthesis of metal-to-metal long ranged macromolecule. Herein, imine bond or amide bond as chemical bond is an important role on the construction of energy transfer or electron transfer system. Therefore, we will be presented on the role of chemical bond for the preparation of polynuclear metal dendritic molecule.

  • PDF

Design of Home or Hetero Polynuclear Metal Dendritic Molecule for PDD or PDT

  • Choi, Chang-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.646-648
    • /
    • 2021
  • The syntheses and properties of polynuclear metal complexes have been reported to develop the easy syntheses and noble photo-characteristics of those complexes for photodynamic diagnosis (PDD) or photodynamic therapy (PDT). We have been focused on the design and synthesis of polynuclear lanthanide dendritic molecule due to long life time of fluorescence. Therefore, we will be presented on the design of home (Eu or Gd) or hetero (Tb or Lu) polynuclear lanthanide dendritic molecule.

  • PDF

One-Pot Reaction Involving Two Different Amines and Formaldehyde Leading to the Formation of Poly(Macrocyclic) Cu(II) Complexes

  • Lee, Yun-Taek;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2517-2522
    • /
    • 2012
  • New polynuclear poly(hexaaza macrocyclic) copper(II) complexes $[1](ClO_4)_{2n}{\cdot}(H_2O)_{2n}$, $[2](ClO_4)_{2n}{\cdot}(H_2O)_{2n}$, and $[3](ClO_4)_{2n}{\cdot}(H_2O)_{2n}$ have been prepared by the one-pot reaction of formaldehyde with ethylenediamine and 1,2-bis(2-aminoethoxy)ethane, 1,3-diaminopropane, or 1,6-diaminohexane in the presence of the metal ion. The polymer complexes contain fully saturated 14-membered hexaaza macrocyclic units (1,3,6,8,10,13-hexaazacyclotetradecane) that are linked by $N-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2-N$, $N-(CH_2)_3-N$, or $N-(CH_2)_6-N$ chains. The mononuclear complex $[Cu(H_2L^5)](ClO_4)_4$ ($H_2L^5$ = a protonated form of $L^5$) bearing two $N-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2-NH_2$ pendant arms has also been prepared by the metal-directed reaction of ethylenediamine, 1,2-bis(2-aminoethoxy)ethane, and formaldehyde. The polymer complexes were characterized employing elemental analyses, FT-IR and electronic absorption spectra, molar conductance, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron micrograph (SEM). Electronic absorption spectra of the complexes show that each macrocyclic unit of them has square-planar coordination geometry with a 5-6-5-6 chelate ring sequence. The polymer complexes as well as $[Cu(H_2L^5)]^{4+}$ are quite stable even in concentrated $HClO_4$ solutions. Synthesis and characterization of the polynuclear and mononuclear copper(II) complexes are reported.