• 제목/요약/키워드: polynomial stability

검색결과 116건 처리시간 0.027초

Prediction of negative peak wind pressures on roofs of low-rise building

  • Rao, K. Balaji;Anoop, M.B.;Harikrishna, P.;Rajan, S. Selvi;Iyer, Nagesh R.
    • Wind and Structures
    • /
    • 제19권6호
    • /
    • pp.623-647
    • /
    • 2014
  • In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

반응표면모델을 이용한 한국형 고속전철 현가장치의 효율적인 최적설계 (Efficient Optimization of the Suspension Characteristics Using Response Surface Model for Korean High Speed Train)

  • 박찬경;김영국;배대성;박태원
    • 한국소음진동공학회논문집
    • /
    • 제12권6호
    • /
    • pp.461-468
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have used a surrogate model that has a regression model performed on a data sampling of the simulation. In general, metamodels(surrogate model) take the form y($\chi$)=f($\chi$)+$\varepsilon$, where y($\chi$) is the true output, f($\chi$) is the metamodel output, and is the error. In this paper, a second order polynomial equation is used as the RSM(response surface model) for high speed train that have twenty-nine design variables and forty-six responses. After the RSM is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called VMM(variable matric method) This paper shows that the RSM is a very efficient model to solve the complex optimization problem.

유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행 (Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms)

  • 전권수;권오흥;박종현
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Optimal Trajectory Generation for Biped Robots Walking Up-and-Down Stairs

  • Kwon O-Hung;Jeon Kweon-Soo;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.612-620
    • /
    • 2006
  • This paper proposes an optimal trajectory generation method for biped robots for walking up-and-down stairs using a Real-Coded Genetic Algorithm (RCGA). The RCGA is most effective in minimizing the total consumption energy of a multi-dof biped robot. Each joint angle trajectory is defined as a 4-th order polynomial of which the coefficients are chromosomes or design variables to approximate the walking gait. Constraints are divided into equalities and inequalities. First, equality constraints consist of initial conditions and repeatability conditions with respect to each joint angle and angular velocity at the start and end of a stride period. Next, inequality constraints include collision prevention conditions of a swing leg, singular prevention conditions, and stability conditions. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot model that consists of seven links in the sagittal plane. The optimal trajectory is more efficient than that generated by the Modified Gravity-Compensated Inverted Pendulum Mode (MGCIPM). And various trajectories generated by the proposed GA method are analyzed from the viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

원예시설용 망의 압력강하 특성에 대한 실험적 연구 (An Experimental Study on Characteristics of Pressure Drop of Screens Used in Horticultural Facilities)

  • 염성현;강승희
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.31-35
    • /
    • 2013
  • This study was carried out to present the pressure drop for various wind speeds through nine types of screens used in horticultural facilities. The screens have been widely used to prevent harmful insects from being entered into agricultural facilities, to reduce strong wind and to shade a light as well. Whatever the usage of the screens was, it was necessary to have good knowledge of how much the screen caused a pressure drop for wind speeds when analyzing both the inner thermal-flow distribution in the facility and the effect of reducing wind speed by using CFD. Furthermore, as for wind screens, the pressure drop for wind speeds was needed as a design load in evaluating the structural stability of the structures supporting the screens. Therefore, the pressure drop through the screens for wind speeds of 5~30 $m{\cdot}s^{-1}$ at about 5 $m{\cdot}s^{-1}$ interval and inflow angles of $0{\sim}45^{\circ}$ at an interval of $15^{\circ}$ was respectively measured in a subsonic wind tunnel. The relation of the pressure drop for various screens was well fitted as a secondorder polynomial expression.

Stability of a slender beam-column with locally varying Young's modulus

  • Kutis, Vladimir;Murin, Justin
    • Structural Engineering and Mechanics
    • /
    • 제23권1호
    • /
    • pp.15-27
    • /
    • 2006
  • A locally varying temperature field or a mixture of two or more different materials can cause local variation of elasticity properties of a beam. In this paper, a new Euler-Bernoulli beam element with varying Young's modulus along its longitudinal axis is presented. The influence of axial forces according to the linearized 2nd order beam theory is considered, as well. The stiffness matrix of this element contains the transfer constants which depend on Young's modulus variation and on axial forces. Occurrence of the polynomial variation of Young's modulus has been assumed. Such approach can be also used for smooth local variation of Young's modulus. The critical loads of the straight slender columns were studied using the new beam element. The influence of position of the local Young's modulus variation and its type (such as linear, quadratic, etc.) on the critical load value and rate of convergence was investigated. The obtained results based on the new beam element were compared with ANSYS solutions, where the number of elements gradually increased. Our results show significant influence of the locally varying Young's modulus on the critical load value and the convergence rate.

The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions

  • Shojaee, S.;Rostami, S.;Moeinadini, A.
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.211-229
    • /
    • 2011
  • In this paper, we present a new explicit procedure using periodic cubic B-spline interpolation polynomials to solve linear and nonlinear dynamic equation of motion governing single degree of freedom (SDOF) systems. In the proposed approach, a straightforward formulation was derived from the approximation of displacement with B-spline basis in a fluent manner. In this way, there is no need to use a special pre-starting procedure to commence solving the problem. Actually, this method lies in the case of conditionally stable methods. A simple step-by-step algorithm is implemented and presented to calculate dynamic response of SDOF systems. The validity and effectiveness of the proposed method is demonstrated with four examples. The results were compared with those from the numerical methods such as Duhamel integration, Linear Acceleration and also Exact method. The comparison shows that the proposed method is a fast and simple procedure with trivial computational effort and acceptable accuracy exactly like the Linear Acceleration method. But its power point is that its time consumption is notably less than the Linear Acceleration method especially in the nonlinear analysis.

태양광 시스템을 위한 가변 조정계수 기반의 적응형 MPPT 제어 기법 (An Adaptive Maximum Power Point Tracking Scheme Based on a Variable Scaling Factor for Photovoltaic Systems)

  • 이귀준;김래영;현동석;임춘호;김우철
    • 전력전자학회논문지
    • /
    • 제17권5호
    • /
    • pp.423-430
    • /
    • 2012
  • An adaptive maximum power point tracking (MPPT) scheme employing a variable scaling factor is presented. A MPPT control loop was constructed analytically and the magnitude variation in the MPPT loop gain according to the operating point of the PV array was identified due to the nonlinear characteristics of the PV array output. To make the crossover frequency of the MPPT loop gain consistent, the variable scaling factor was determined using an approximate curve-fitted polynomial equation about linear expression of the error. Therefore, a desirable dynamic response and the stability of the MPPT scheme were maintained across the entire MPPT voltage range. The simulation and experimental results obtained from a 3 KW rated prototype demonstrated the effectiveness of the proposed MPPT scheme.

Adelphic Integral을 이용한 비선형 정규모드 진동 해석 (A Study on the Nonlinear Normal Mode Vibration Using Adelphic Integral)

  • Huinam Rhee;Joo, Jae-Man;Pak, Chol-Hui
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.799-804
    • /
    • 2001
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6th order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhotf-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

  • PDF