• Title/Summary/Keyword: polymerization process

Search Result 473, Processing Time 0.03 seconds

Physical Properties of Polymer Impregnated Concrete Prepared using Microwave Radiation (Microwave Radiation을 이용하여 제조된 고분자 함침 콘크리트의 물리적 특성)

  • Ku, Du Hyun;Park, Jung Soon;Park, Heon Young;Hur, Myung Jun;Lee, Won Mook
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.345-350
    • /
    • 2008
  • Polymer Impregnated Concrete (PIC) prepared from Ordinary Portland Cement Concrete (OPC) has excellent mechanical properties as well as physico-chemical properties. For the manufacturing of PIC, drying process of basis concrete (precast concrete), impregnation process with evacuation system and ultrasonic vibration system, polymerization process of monomers are essential. Modified microwave reactor using magnetron was used for polymerization of styrene/MMA (1 : 1) impregnated in pore volume of basis concrete. From the experimental results, the degree of polymerization increased up to 30% and more homogeneous PIC was prepared as compared to the conventional thermal method. Also the mechanical strengths increased more than 400% ($800{\sim}1200kg_f/cm^2$) and the resistance for corrosion to acids was improved up to 25%. AIBN and BPO as initiators for polymerization were used at the concentration less than 1%. Optimum conditions for polymerization were obtained at the frequency of microwave of 400 W and 2450 MHz, and optimum reaction temperature was $120^{\circ}C$ at an atmospheric pressure.

Viscoelastic analysis of residual stresses in a unidirectional laminate

  • Lee, Sang Soon;Sohn, Yong Soo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.383-393
    • /
    • 1994
  • The residual stress distribution in a unidirectional graphite/epoxy laminate induced during the fabrication process is investigated at the microstress level within the scope of linear viscoelasticity. To estimate the residual stresses, the fabrication process is divided into polymerization phase and cool-down phase, and strength of materials approach is employed. Large residual stresses are not generated during polymerization phase because the relaxation modulus is relatively small due to the relaxation ability at this temperature level. The residual stresses increase remarkably during cool-down process. The magnitude of final residual stress is about 80% of the ultimate strength of the matrix material at room temperature. This suggests that the residual stress can have a significant effect on the performance of composite structure.

A New Method to Measure the Conversion of Radiation Polymerization of Electrolyte Monomer Diallyldimethylammonium Chloride in Dilute Aqueous Solution

  • Zhang, Yalong;Yi, Min;Ren, Jing;Zhai, Maolin;Ha, Hongfei
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.146-151
    • /
    • 2003
  • The dependence of electrical conductivity on concentrations of diallyldimethylammonium chloride (DADMAC) monomer, linear poly(DADMAC) and their mixture monomer/poly(DADMAC) in dilute aqueous solution exhibits a linear relationship. It was possible to calculate conversion of DADMAC polymerization by measuring its electric conductivity. Although the electrical conductivity of the poly(DADMAC) solution decreased with increasing its molecular weight, in the process of UV or ionizing radiation polymerization the molecular weight of the polymers could be kept constant in the case of fixed temperature, UV-luminous intensity or dose rate. Based on the method mentioned above, the kinetics of UV induced polymerization of DADMAC in aqueous solution was studied; the overall activation energy of polymerization of DADMAC in the water phase was calculated to be 18.8 kJ mol$^{-1}$ . ${\gamma}$-Radiation-induced polymerization of DADMAC in aqueous solution as a function of absorbed dose was studied as well. The conversion of DADMAC increased quickly with dose before 30 kGy and then increased slowly. The experimental data of both UV- and ${\gamma}$-induced polymerization were verified to be reliable by inverted ultracentrifugation method.

Development of a Nano Replication Printing(nRP) Process using a Voxel Matrix Scanning Scheme (복셀 메트릭스 스캐닝법에 의한 나노 복화(複畵)공정 재발)

  • 박상후;임태우;양동열;이신욱;공홍진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.210-217
    • /
    • 2004
  • In this study, a new process, named as nano replication printing(nRP) process, is developed for printing any figure in the range of several micrometers by using voxel matrix scanning scheme. In this newly developed process, a femto-second laser is scanned on a photosensitive monomer resin in order to induce polymerization of the liquid resin according to a voxel matrix which is transformed from bitmap format file. After the polymerization, a droplet of ethanol is dropt to remove the unnecessary remaining liquid resin and then the polymerized figures with nano-scaled precision are only remaining on the glass plate. By the nRP process, any figure file of bitmap format could be reproduced as nano-scaled precision replication in the range of several micrometers. Also, nano/micro-scaled patterns for an extremely wide range of applications would become a technologically feasible reality. Some of figures with nano-scaled precision were printed in scaled replication as examples to prove the usefulness of this study.

Characterizations of Modified Silica Nanoparticles(II) ; Preparation and Application of Silica Nanoparticles as a Environmentally Filler

  • Min, Seong-Kee;Bae, Deok-Kwun;Park, Sang-Bo;Yoo, Seong-Il;Lee, Won-Ki;Park, Chan-Young;Seul, Soo-Duk
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.433-438
    • /
    • 2012
  • A chemical process involves polymerization within microspheres, whereas a physical process involves the dispersion of polymer in a nonsolvent. Nano-sized monodisperse microspheres are usually prepared by chemical processes such as water-based emulsions, seed suspension polymerization, nonaqueous dispersion polymerization, and precipitation polymerizations. Polymerization was performed in a four-necked, separate-type flask equipped with a stirrer, a condenser, a nitrogen inlet, and a rubber stopper for adding the initiator with a syringe. Nitrogen was bubbled through the mixture of reagents for 1 hr. before elevating the temperature. Functional silane (3-mercaptopropyl)trimethoxysilane (MPTMS) was used for the modification of silica nanoparticles and the self-assembled monolayers obtained were characterized by X-ray photoelectron spectroscopy (XPS), laser scattering system (LSS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental analysis (EA), and thermogravimetric analysis (TGA). In addition, polymer microspheres were polymerized by radical polymerization of ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) and acrylamide monomer via precipitation polymerization; then, their characteristics were investigated. From the elemental analysis results, it can be concluded that the conversion rate of acrylamide monomer was 93% and that polyacrylamide grafted to MPSN nanospheres via the radical precipitation polymerization with AAm in ethanol solvent. The microspheres were successfully polymerized by the 'graft from' method.

Polymerization of aniline using a peroxidase-mimetic catalyst

  • Kim, Min-Chul;Lim, Youngjoon;Lee, Sang-Yup
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.364-371
    • /
    • 2018
  • Enzyme polymerization is a benign process exploiting the unique activity of enzymes. In this study, a peroxidase-mimetic catalyst is demonstrated as an alternative to horseradish peroxidase (HRP) for the polymerization of aniline. The mimetic catalyst successfully catalyzes the polymerization of aniline monomers to produce polyaniline (PANI) in an aqueous solution. The PANI produced is rich of para-structure that is generally observed when HRP is used as a catalyst. Compared to HRP, the peroxidase-mimetic catalyst shows a considerably higher catalytic activity at neutral and weak basic conditions (pH >6.5) and at temperatures over $45^{\circ}C$, at which HRP is denatured.

Influence of "Historical Effects" on the Rheological Properties of a Polyacrylonitrile Copolymer Solution

  • Cheng, Yumin;Zhang, Huibo;Zhang, Shuangkun;Liu, Weiwei;Wang, Jing;Cheng, Run;Ryu, SeungKon;Jin, Riguang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Polyacrylonitrile (PAN) copolymers of different molecular weights were synthesized by a suspension polymerization and precipitation polymerization method. The rheology behaviors of the synthesized PAN copolymers were investigated in relation to their molecular weight, solid content and melting temperature. The influence of "historical effects" on the spinning solution of PAN was studied by analyzing the laws of viscosity considering the diversification time and temperature. The viscosity disciplines of each spinning solution conformed well to the rheological universal laws in a comparison of the suspension polymerization product with that of precipitation polymerization. Viscosity changes in the swelling process of dissolution were gentler in the suspension polymerization product; a small amount of water will quickly debase the solution viscosity, and high-speed mixing can greatly shorten the time required by the spinning solution to reach the final viscosity.

Preparation of Composite Membranes for Recovery of Unreacted Olefin Monomers (미반응 올레핀계 모노머 회수를 위한 복합막의 제조)

  • Kim, Hyun-Gi;Kim, Sang-Yong;Kim, Sung-Soo
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • Composite membranes were prepared for membrane/cold condensation process for recovery of unreacted olefin monomer from the polyolefin polymerization process by solution coating and plasma polymerization processes. Poly(dimethylsiloxane) (PDMS) solution was coated on polysulfone (PSF) support and increase of prepolymer content in solution made more dense membrane structure to result in the increase of separation factor while absolute flux decreased. Permeation of organic materials through the composite membranes follows the sorption and diffusion mechanism, which brought about the results that separation factor increased with critical temperature of the organic materials, and that flux increased with the increase of the molar volume. Crosslinking period affected the permeation characteristics. Other types of composite membranes were fabricated by plasma polymerization of siloxane materials on polypropylene (PP) and PSF supports. PP was tested as a support for composite membranes, which had not been used so far in solution coating process, and plasma polymerization made the composite membranes equivalent performances to those of membranes prepared by solution coating process.

A Study on Effect of Process Parameters and Development of Prediction Model for Prepolymer Mass Production (대용량 프리폴리머 중합공정의 영향인자 평가 및 예측모델 개발에 관한 연구)

  • Ha, Kyong-Ho;Kang, Dae-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Synthetic products such as casting tape and splints are rapidly replacing conventional plaster casts to treat orthopedic patients. Most synthetic products are produced through a polymerization process with related chemical agents. In this study, the effect of the process parameters on the residual NCO content within a prepolymer for casting tape and the hardening temperature for casting tape were experimentally evaluated. In order to verify the effects of the process parameters, an experimental method was adopted. From an S/N ratio analysis, optimal parameter combinations were determined to produce a pre-polymer with a suitable residual NCO content and alower hardening temperature. Prediction models for the NCO content and the hardening temperature were developed and confirmed.

COLOR DIFFERENCES BETWEEN RESIN COMPOSITES BEFORE- AND AFTER-POLYMERIZATION, AND SHADE GUIDES (복합레진의 광중합 전·후와 shade guide의 색차 비교)

  • Chon, Yi-Ju;Cho, Sung-Shik;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.299-309
    • /
    • 1999
  • The composite resin, due to its esthetic qualities, is considered the material of choice for restoration of anterior teeth. With respect to shade control, the direct-placement resin composites offer some distinct advantages over indirect restorative procedures. Visible-light-cured (VLC) composites allow dentists to match existing tooth shades or to create new shades and to evaluate them immediately at the time of restoration placement. Optimal intraoral color control can be achieved if optical changes occurring during application are minimized. An ideal VLC composite, then, would be one which is optically stable throughout the polymerization process. The shade guides of the resin composites are generally made of plastic, rather than the actual composite material, and do not accurately depict the true shade, translucency, or opacity of the resin composite after polymerization. So the numerous problems associated with these shade guides lead to varied and sometimes unpredictable results. The aim of this study was to assess the color changes of current resin composite restorative materials which occur as a result of the polymerization process and to compare the color differences between the shade guides provided with the products and the actual resin composites before- and after-polymerization. The results obtained from this investigation should provide the clinician with information which may aid in improved color match of esthetic restoration. Five light activated, resin-based materials (${\AE}$litefil, Amelogen Universal, Spectrum TPH VeridonFil-Photo, and Z100) and shade guides were used in this study. Three specimens of each material and shade combination were made. Each material was condensed inside a 1.5mm thick metal mold with 10mm diameter and pressed between glass plates. Each material was measured immediately before polymerization, and polymerized with Curing Light XL 3000 (3M Dental products, USA) visible light-activation unit for 60 seconds at each side. The specimens were then polished sequentially on wet sandpaper. Shade guides were ground with polishing stones and rubber points (Shofu) to a thickness of approximately 1.5mm. Color characteristics were performed with a spectrophotometer (CM-3500d, Minolta Co., LTD). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$ and $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E{^*}ab$) of resin composites before the polymerization process and shade guides using the post-polishing color of the composite as a control, CIE standard D65 was used as the light source. The results were as follows. 1. Each of the resin composites evaluated showed significant color changes during light-curing process. All the resin composites evaluated except all the tested shades of 2100 showed unacceptable level of color changes (${\Delta}E{^*}ab$ greater than 3.3) between pre-polymerization and post-polishing state. 2. Color differences between most of the resin composites tested and their corresponding shade guides were acceptable but those between C2 shade of ${\AE}$litefil and IE shade of Amelogen Universal and their respective shade guides exceeded what is acceptable. 3. Comparison of the mean ${\Delta}E{^*}ab$ values of materials revealed that Z100 showed the least overall color change between pre-polymerization and post-polishing state followed by ${\AE}$litefil, VeridonFil-Photo, Spectrum TPH, and Amelogen Universal in the order of increasing change and Amelogen Universal. Spectrum TPH, 2100, VeridonFil-Photo and ${\AE}$litefil for the color differences between actual resin and shade guide. 4. In the clinical environment, the shade guide is the better choice than the shade of the actual resin before polymerization when matching colors. But, it is recommended that custom shade guides be made from resin material itself for better color matching.

  • PDF