• Title/Summary/Keyword: polymeric primer

Search Result 3, Processing Time 0.018 seconds

Characterizing the ac-dc-ac Degradation of Aircraft and Vehicle Organic Coatings using Embedded Electrodes

  • Bierwagen, Gordon P.;Allahar, Kerry N.;Su, Quan;Victoria, Johnston-Gelling
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.261-268
    • /
    • 2007
  • Embedded sensors were used as an in-situcorrosion-sensing device for aircraft and vehicular structures protected by organic coatings. Results are presented changes associated with a standard Airforce aircraft coating and a standard Army vehicle coating were monitored by embedded sensors. These coatings consisted of a polyurethane topcoat and an epoxy primer, however are formulated to provide different characteristics. The ac-dc-ac testing method was used to accelerate the degradation of these coatings while being immersed in a NaCl medium. Electrochemical impedance spectroscopy and electrochemical noise measurement experiments were used to monitor the induced changes. A comparison of the results between coatings subjected to the ac-dc-ac exposure and coatings subjected to only constant immersion in the NaCl medium is presented. The results were used to demonstrate the effectiveness of the ac-dc-ac method at accelerating the degradation of an organic coating without observably changing the normal mechanism of degradation. The data highlights the different features of the coating systems and tracks them while the coating is being degraded. The aircraft coating was characterized by a high-resistant topcoat that can mask corrosion/primer degradation at the primer/substrate interface whereas the vehicle coating was characterized by a low-resistant topcoat with an effective corrosion inhibiting primer. Details of the ac-dc-ac degradation were evaluated by using an equivalent circuit to help interpret the electrochemical impedance data.

Dynamics and Instability of a Polymeric Paint in Roll Coating Process for Automotive Pre-coating Application (자동차 선도장을 위한 롤코팅 공정에서 고분자 도료의 동적 거동 및 불안정성)

  • Kim, Jin-Ho;Lee, In-Jun;Noh, Seung-Man;Kang, Choong-Yeol;Nam, Joon-Hyun;Jung, Hyun-Wook;Park, Jong-Myung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.574-579
    • /
    • 2011
  • 3-Roll coating process as a key application technology for manufacturing automotive pre-painted metal-sheets has been studied. The 3-Roll coating system for this study consists of pick-up roll for picking up and distributing coating liquid from the reservoir, metering roll to properly meter coating liquid in metering gap regime, and applicator roll for directly transferring liquid into metal-sheet surface. Flow dynamics and operable coating windows of a polymeric paint (primer) with shear-thinning rheological property have been correlated with processing parameters such as speed ratio and metering gap between pick-up and metering rolls. In the uniform coating regime, dry coating thickness increased with increasing metering gap or decreasing speed ratio. Ribbing and cascade instabilities were observed in low speed and high speed ratio conditions, respectively. It is revealed that lower speed ratio makes severity and wavelength of the ribbing increase, aggravating flow instability in coating systems.

Analysis of Automotive Paints using Pyrolysis-Gas Chromatography (열분해-가스크로마토그라피에 의한 자동차 페인트 분석)

  • Shon, Sung-Kun;Park, Ha-Sun;Lee, Jin-Sook;Hong, Sung-Wook;Park, Sung-Woo;Cho, Sung-Hye
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.101-107
    • /
    • 2000
  • The automotive paints could be generally differentiated by color, layer sequence and chemistry of the paint layers comprising each of the topcoat and the primer system. The successful identification of hit-andrun a and traffic accidental vehicles from evidential paint fiagments is greatly facilitated with a comprehensive laboratory collection of reference paint samples and the technique for direct analysis without sample preparation. The Pyrolysis-Gas Chromatography(PGC) is a precise and reliable method for performing both quantitative and qualitative analysis of polymeric materials and forensic samples. Our Forensic Laboratory is conducting the examination and identification of 73 reference paint samples; 4 colors of each domestic automotive make that is popular in Korea, by Curie Point Pyrolyzer(JHP-3) and GC with capillary column(ultra alloy-5). This method can be used not only to compare paint traces with their suspected sources, but also to identify the type, make and model of the automotive car.

  • PDF