• Title/Summary/Keyword: polymeric carrier.

Search Result 61, Processing Time 0.027 seconds

A Polymeric Micellar Carrier for the Solubilization of Biphenyl Dimethyl Dicarboxylate

  • Chi, Sang-Cheol;Yeom, Dae-Il;Kim, Sung-Chul;Park, Eun-Seok
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.173-181
    • /
    • 2003
  • A polymeric micelle drug delivery system was developed to enhance the solubility of poorly-water soluble drug, biphenyl dimethyl dicarboxylate, DDB. The block copolymers consisting of poly(D,L-lactide) (PLA) as the hydrophobic segment and methoxy poly(ethylene glycol) (mPEG) as the hydrophilic segment were synthesized and characterized by NMR, DSC and MALDI-TOF mass spectroscopy. The size of the polymeric micelles measured by dynamic light scattering showed a narrow monodisperse size distribution with the average diameter less than 50 nm. The MW of mPEG-PLA, 3000 (MW of mPEG, 2 K; MW of PLA, 1K), and the presence of hydrophilic and hydrophobic segments on the polymeric micelles were confirmed by MALDI-TOF mass spectroscopy and NMR, respectively. Polymeric micelle solutions of DDB were prepared by three different methods, i.e. the matrix method, emulsion method and dialysis method. In the matrix method, DDB solubility was reached to 13.29 mg/mL. The mPEG-PLA 2K-1K micelle system was compared with the poloxamer 407 micelle system for their critical micelle concentration, micelle size, solubilizing capacity, stability in dilution and physical state. DDB loaded-polymeric micelles prepared by the matrix method showed a significantly increased aqueous solubility (>5000 fold over intrinsic solubility) and were found to be superior to the poloxamer 407 micelles as a drug carrier.

Study of Continuous Production of Alcohol using Biologically Sandwich-styled Immobilization Carrier (샌드위치식 고분자담체를 이용한 알코올 연속생산연구)

  • Park, Young-G.;Kim, Hee-Jung
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.213-218
    • /
    • 2008
  • The present study was to investigate the continuous production of alcohol using immobilized carrier manufactured by polymeric materials. Fermentation runs with a crushed rice, with constituents recovered from batch culture and with ones from continuous culture were thus compared. The performances of immobilized carrier were governed by sandwitched synthetic polymers, the evolution of the continuous culture was steadily governed by the production of alcohol in the lag time of batch culture. The main focus was set on the enhancement of the alcohol production by an newly-developed polymeric forms. This polymeric form led to a drastic increase of the microorganism and the production cost in the continuous reactor was thereby reduced. The sandwitched polymeric-formed carrier, which was resistant to external environments, serves as an interesting alternative to maintain the stability of biological process. These whole results were discussed with the aim to better understand the continuous process implied in the microorganism's build-up during cultivation of fermentation broth.

Simultaneous Biofiltration of H2S, NH3 and Toluene using an Inorganic/Polymeric Composite Carrier

  • Park, Byoung-Gi;Shin, Won-Sik;Chung, Jong-Shik
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2008
  • Simultaneous removal of ternary gases of $NH_3$, $H_2S$ and toluene in a contaminated air stream was investigated over 180 days in a biofilter. A commercially available inorganic/polymeric composite chip with a large void volume (bed porosity > 0.80) was used as a microbial support. Multiple microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) ranged from 60 - 120 seconds and the inlet feed concentration was $0.0325\;g/m^3-0.0651\;g/m^3$ for $NH_3$, $0.0636\;g/m^3-0.141\;g/m^3$ for $H_2S$, and $0.0918\;g/m^3-0.383\;g/m^3$ for toluene, respectively. The observed removal efficiency was 2% - 98% for $NH_3$, 2% - 100% for $H^2S$, and 2% - 80% for toluene, respectively. Maximum elimination capacity was about $2.7\;g/m^3$/hr for $NH_3$, > $6.4\;g/m^3$/hr for $H_2S$ and $4.0\;g/m^3$/hr for toluene, respectively. The inorganic/polymeric composite carrier required 40 - 80 days of wetting time for biofilm formation due to the hydrophobic nature of the carrier. Once the surface of the carrier was completely wetted, the microbial activity became stable. During the long-term operation, pressure drop was negligible because the void volume of the carrier was two times higher than the conventional packing materials.

Drug-Release Behavior of Polymeric Prodrugs of Ibuprofen with PEG and Its Derivatives as Polymeric Carriers

  • Lee, Chao-Woo
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.71-77
    • /
    • 2004
  • We have synthesized various types of poly(ethylene glycol) (PEG)-ibuprofen conjugates by nucleophilic substitution of bromo-terminated PEG with ibuprofen-Cs salt. The conversion of the terminal hydroxyl groups to bromo-termini was quantitative, as was the drug conjugation process, which suggests that the present synthetic method is very useful for the preparation of PEG-based prodrugs from pharmaceuticals having carboxyl functionalities. The drug-release behavior of the prodrugs was examined in both phosphate buffer (PBS, pH 7.4) and rat plasma. From the drug-release behavior in PBS, we determined that each prodrug has high storage stability. The drug-release rate was observed to be much faster in rat plasma than in buffer solution as a result of the acceleration effect provided by enzymes present in the plasma. The drug-release rate in rat plasma depends on the degree of molecular aggregation of the prodrugs, which can be changed effectively by the nature of their spacer groups or by the use of Pluronic as the polymer carrier.

Polymeric Lead(II)-selective Electrode Based on N,N'-Bis-thiophen-2-ylmethylene-pyridine-2,6-diamine as an Ion Carrier

  • Kim, Hee-Cheol;Lee, Hyo-Kyoung;Choi, A-Young;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.538-542
    • /
    • 2007
  • Polymeric electrodes for lead ion based on N,N'-bis-thiophen-2-ylmethylene-pyridine-2,6-diamine as an ion carrier were prepared. The membrane electrode (m-3) containing o-NPOE as a plasticizer and 50 mol% additive of ionophore gives an excellent Nernstian response (29.59 mV/decade) and the limit of detection of ?log a (M) = 5.74 to Pb2+ in Pb(NO3)2 solution at room temperature. The prepared electrode provided good sensitivity and outstanding selectivity and response for Pb2+ over a wide variety of other metal ions in pH 7.0 buffer solutions. The good sensitivity and selectivity towards lead ion are attributed to the strong complexation of lead ion to N,N'-bis-thiophen-2-ylmethylene-pyridine-2,6-diamine which has geometrically the proper cavity to coordinate to the ligand.

Ion-Selective Electrodes in Drugs Analysis: Verapamil-Selective Polymeric Membrane Electrodes Based on Calix[4]arene and Dibenzo-18-crown-6-ether Ionophores (이온 선택성 전극을 이용한 의약품 정량: Calix[4]arene과 Dibenzo-18-crown-6-ether에 의한 verapamil-선택성 polymeric membrane electrode)

  • 이은엽;김성진;김영학;김재현;허문회;안문규
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.61-67
    • /
    • 1995
  • PVC membrane electrodes based on the lipophilic neutral carrier, dibenzo-18-crown-6, cyclic oligomers of teit-butylphenol-formaidehyde condensates, calix[4]arenes as the active sensors for verapamil have been prepared and tested in a variety of plasticizers. At pH 5.0, the electrode exhibits a Nernstian response in the range of 10$^{-2}$~5$\times$10$^{-5}$ M verapamil with a slope of 49.1$\pm$0.5mV per concentration decade. The electrode constructed in this work can be used continuously for at least 1 month before any damage to the membrane occurs. And the analyses of the local anesthetic amine, which are good to select a specific compound in a mixed solution, were also accomplished by using of another neutral carrier, a DB18C6, for comparing with calix[4]arene.

  • PDF

Synthesis of Water-Soluble Methoxyethoxy-Aminoarlyoxy Cosubstituted Polyphosphazenes as Carrier Molecules for Bioactive Agents

  • Gwon, Seok Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1039-1040
    • /
    • 2000
  • The water-soluble poly(methoxyethoxy-aminoarlyoxy phosphazene) has been synthesized and investigated as a polymeric carrier molecule for the covalent attachment of bioactive agents. The synthetic procedures were developed first through the use of cyclic trimeric model systems. These model systems were utilized for the synthesis of polymeric analogues containing bioactive side groups. The sodium salts of 2-methoxyethanol and 4-acetamidophenol were allowed to react with $(NPCl_2)_3$ or $(NPCl_2)n$ or to yield derivatives of type $[NP-(OCl_2CH_2CH_2OCH_3){\chi}(OArNHCOCH_3)y]_3or$ n. The 4-acetamido groups were then hydrolyzed to 4-amino-phenoxy units with potassium tert-butoxide. Coupling reactions between amino group and N-acetylglycine was accomplished with the use of dicyclohexylcarbodiimide. Their properties and structural characterization are discussed.

Synthesis of Water-Soluble Aminoaryloxy-Methylamino Cosubstituted Polyphosphazenes as Carrier Species for Biologically Active Agents

  • Gwon, Seok Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1243-1247
    • /
    • 2001
  • The water-soluble poly(aminoaryloxy-methylamino phosphazene) has been synthesized and investigated as a polymeric carrier species for the covalent attachment of biologically active agents. The cyclic trimeric model systems were utilized for the synthesis of polymeric analogues containing bioactive side groups. The sodium salt of 4-acetamidophenol was first allowed to react with (NPCl2)3 or (NPCl2)n and was then treated with excess methylamine to yield derivatives of type [NP(NHCH3)x(OArNHCOCH3)y]3 or [NP(NHCH3)x(OArNHCOCH3)y]n. The 4-acetamido groups were then hydrolyzed to 4-aminophenoxy units with potassium tert-butoxide. Coupling reactions between amino group and N-acetylglycine was accomplished with the use of dicyclohexylcarbodiimide. Their properties and structural characterization are discussed.

Polymeric and Oligomeric OTFT Materials Containing Fused Aromatics

  • Kim, Hyeong-Sun;Kim, Yun-Hi;Jung, Sung-Wook;Yi, Mi-Hye;Pyo, Seung-Moon;No, Yong-Young;Kim, Dong-Yu;Kwon, Soon-Ki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.161-161
    • /
    • 2006
  • New polymeric and oligomeric OTFT materials containing fused aromatics such as anthracene and naphthalene have been designed, synthesized and characterized. The new OTFT materials were prepared by palladium-catalyzed Suzuki cross-coupling reaction. The obtained materials were characterized by various spectroscopic methods such as UV-vis, PL, cyclovoltametry, and XRD. The obtained OTFT materials containing fused aromatics showed high thermal stability above $350^{\circ}C$ In OTFT devices using new materials, high charge carrier mobility and on/off ratio were observed.

  • PDF

Fabrication of Nano-sized Titanate Powder via a Polymeric Steric Entrapment Route and Planetary Milling Process

  • Lee, Sang-Jin;Lee, Chung-Hyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.336-340
    • /
    • 2002
  • Pure and nano-sized $TiO_2$ and $CaTiO_3$ powders were fabricated by a polymeric steric entrapment route and planetary milling process. An ethylene glycol was used as a polymeric carrier for the preparation of organic-inorganic precursors. Titanium isopropoxide and calcium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. At the optimum amount of the polymer, the metal cations were dispersed in solution and a homogeneous polymeric network was formed. The dried precursor ceramic gels were turned to porous powders through calcination process. The porous powders were crystallized at low temperatures and the crystalline powders were planetary milled to nano size.