• Title/Summary/Keyword: polymer waste

Search Result 270, Processing Time 0.031 seconds

A Study on the Properties of Polymer Mortar Using Waste Expanded Polystyrene as a Shrinkage-Reducing Agent (수축저감제로서 발포 폴리스티렌 폐기물을 이용한 폴리머 모르터의 기초적 성질에 관한 연구)

  • 최낙운;김완기;조영국;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.362-367
    • /
    • 1998
  • The purpose of this study is to examine the influences of polystyrene content and St/UP on the setting shrinkage and strengths of polymer mortar with waste expanded polystyrene resin as a shrinkage-reducing agent, and to recommend the optimum binder formulations for product of low-shrinkage polymer mortar. In this paper, polymer mortar is prepared with waste expanded polystyrene content and St/UP, and tested for setting shrinkage, flexural and compressive strengths. From the test results, irrespective of increasing of waste expanded polystyrene resin, the strengths reduction of polymer mortar with waste expanded polystyrene(EPS) resin is not recognized. And the setting shrinkage is reduced with EPS resin content. The waste expanded polystyrene resin as a shrinkage-reducing agent can be used in the same manner as commercial polystyrene resin. In this study, we can obtain the optimum mix proportions of polymer mortar using EPS resin.

  • PDF

Development of FRP Waste Recycling Technology by Property Invesitigation and Polymer Cement Mortar Manufacturing (물성조사와 폴리머 시멘트 몰타르 제조를 통한 FRP폐기물의 재활용 기술개발)

  • Kim, Yong-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.55-62
    • /
    • 2003
  • This study has investigated physical and chemical properties of FRP waste, has manufactured polymer cement mortar using a crushed waste with sand and has evaluated its capability to develop the economical waste recycling technology. The study has investigated tension strength, hardness test and impact test as physical properties and also thermogravimetric characteristics and analyzed infrared spectroscope as chemical properties. Then the study has manufactured polymer cement mortar and has analyzed how the FRP waste fine aggregate replacement ratio has an effect on compression strength. Noticing admixture can complement strength drop occurred by the FRP waste fine aggregate replacement, the study examined an optimum rate of admixture addition and its reaction through electron microscope photos.

Engineering properties of permeable polymer concrete for pavement using powdered waste glass as filler (폐유리분말을 충전재로 사용한 포장용 투수성 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan-Yong;Kim, Tae-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.145-151
    • /
    • 2011
  • This study was performed to evaluate the void ratio, compressive and flexural strength, and permeability coefficient used powdered waste glass, $CaCO_3$, recycled coarse aggregate and unsaturated polyester resin to find optimum mix design of permeable polymer concrete for pavement. The void ratio and permeability coefficient of permeable concrete for pavement was decreased with increasing the powdered waste glass, respectively. The compressive strength and flexural strength was increased with increasing the powdered waste glass, respectively. In addition, this study found out that required amount of binder was decreased with increasing the powdered waste glass. This fact is expected to have economical effects during the use of powdered waste glass in the manufacture of permeable polymer concrete for pavement. Therefore, powdered waste glass and recycled coarse aggregate can be used for permeable polymer pavement.

Engineering Properties of Permeable Polymer Concrete for Pavement using Powdered Waste Glass and Recycled Coarse Aggregate (폐유리분말과 재생골재를 사용한 포장용 투수성 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan-Yong;Kim, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.59-65
    • /
    • 2011
  • This study was performed to evaluate the compressive and flexural strength, void ratio and permeability coefficient used powdered waste glass, $CaCO_3$, recycled coarse aggregate and unsaturated polyester resin to find optimum mix design of permeable polymer concrete for pavement. The compressive and flexural strength of permeable polymer concrete for pavement using powdered waste glass were in the range of 16.8~19.7 MPa and 4.7~6.1 MPa, respectively. it was satisfied the regulation of permeable concrete for pavement (18 MPa and 4.5 MPa). The void ratio and permeability coefficient were decreased with increasing the powdered waste glass, respectively. The void ratio and permeability coefficient were satisfied national regulation of permeable concrete for pavement (8 % and $1{\times}10^{-2}$ cm/s). In addition, this study found out that required amount of binder was decreased with increasing the powdered waste glass. This fact is expected to have economical effects during the use of powdered waste glass in the manufacture of permeable polymer concrete for pavement. Accodingly, the powdered waste glass can be used for permeable concrete material.

A study on the manufacture of polymer concrete using the waste paint (폐 페인트를 이용한 폴리머 콘크리트의 제조에 관한 연구)

  • 이창훈;박재읍;최진호;권진회;제우성;김성호
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2004
  • In this paper, the polymer concrete using the chemically treated waste paint and polystyrene foam was manufactured and their mechanical properties were evaluated. The compressive strength, specific gravity and water absorption with respect to the volume percents of the waste paint and resin were tested. From the tests, the specific gravities of the polymer concretes using the waste paint were lower than that of the conventional polymer concrete and it was recommended that they can be used for building exterior materials.

Enhancement of Physical Properties in Partially Crosslinked Waste High Density Polyethylene (재활용 고밀도 폴리에틸렌의 가교에 의한 물성 향상 연구)

  • Lee, Jong-Rok;Lee, Dong-Gun;Hong, Soon-Man;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • The characteristics of crosslinking and physical properties in partially crosslinked waste high density polyethylene (HDPE) were studied by introducing reactive melt processing with perbutyl peroxide (PBP). It was found that impurities in waste HDPE affected the crosslinking kinetics. Decrease in density and heat of fusion were observed in partially crosslinked HDPE while its melt viscosity increased. It was explained that impurities in waste HDPE enhanced the crosslinking compared to pure HDPE As a result, dramatic mechanical property improvement was achieved in the waste HDPE by crosslinking reaction.

Physical Properties of Polymer-Modified Mortars Using Waste Concrete Fine Aggregate (재생잔골재를 사용한 폴리머 시멘트 모르타르의 물성)

  • Hwang, Eui-Hwan;Choi, Jae-Jin;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.793-797
    • /
    • 2005
  • This study was undertaken to examine the feasibility of recycling waste concrete fine aggregate to prepare polymer-modified mortars. The specimens of polymer-modified mortars were prepared by using styrene-butadiene rubber(SBR) latex and polyacrylic ester(PAE) emulsion as a polymer modifier. The formulations for specimens were prepared with various replacing ratios of waste concrete fine aggregates as parts of standard sand and various polymer cement ratios. For the evaluation of the performance of polymer-modified mortars, various physical properties were investigated. As a results, water cement ratio of polymer-modified fresh mortars increased with an increase of recycled fine aggregate, but decreased with an increase of polymer modifiers. The compressive and flexural strengths of polymer-modified mortars decreased with an increase of recycled fine aggregate, but flexural strengths increased with an increase of polymer modifiers.

  • PDF

Strength Properties and Durability of Polymer Concrete Using Mixed Waste Plastics (복합재질 폐플라스틱을 재활용한 폴리머콘크리트의 강도 특성 및 내구성)

  • Joo, Myung-Ki;Lee, Youn-Su;Kim, Moon-Chan;Kim, Youn-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.219-226
    • /
    • 2006
  • The effects of binder content and PA content on the flexural, compressive and impact strengths, water absorption and frezzing and thawing of polymer concrete using mixed waste plastics are examined. As a result the flexural, compressive and impact strengths of the polymer concretes using mixed waste plastics tend to increase with increasing binder content and filler content, regardless of the PA content. The flexural, compressive and impact strengths of the polymer concretes using mixed waste plastics decrease with increasing PA content. The water absorption of the polymer concretes using mixed waste Plastics tend to decreased with increasing binder content, regardless of the PA content. The durability factor of the polymer concretes using mixed waste plastics tend to increased with increasing binder content. However, the durability factor of the polymer concretes using mixed waste plastics tend to decreased with increasing PA content.

Evaluation of Waste Tire Rubber Asphalt Concrete using Polymer Modified Binders (폴리머 개질 폐타이어 아스팔트 콘크리트의 특성 연구)

  • 김광우;이지용;오성균
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.180-185
    • /
    • 1998
  • The study was conducted to evaluate the fundamental properties of waste tire asphalt concretes using polymer modified hinder that were made by dry process. The specimens of four types of polymer modified asphalt concretes were prepared, then Marshall test and indirect tensile strength tests were performed on these samples. The results showed that polymer modified waste tire rubber asphalt concrete was acceptable for the material of asphalt pavement surface layer.

  • PDF

Physical Properties of Polymer Mortar Recycling Waste Concrete Powder as a Filler (폐콘크리트 미분말을 충전재로 재활용한 폴리머 모르타르의 물성)

  • Hwang, Eui-Hwan;Choi, Jae-Jin;Hwang, Taek-Sung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.317-322
    • /
    • 2005
  • Nowadays, recycling of aggregates from the waste concrete is in big demand due to the protection of environment and the shortage of aggregates that are needed for ever expanding construction projects. This study was undertaken to examine the feasibility of recycling waste concrete powder produced in the crushing process of demolished concrete as a filler material for polymer mortar. In this study, polymer mortar specimens were prepared by varying the mix proportion of polymer binder (ranging 9~15 wt%), waste concrete powder (ranging 0~20 wt%) substituted for silica powder, 0.1~0.3 mm fine aggregate (ranging 21~24 wt%) and 0.7~1.2 mm fine aggregate (ranging 44~47 wt%). For the prepared polymer mortar specimens, various physical properties such as strength, water absorption, heat water resistance, acid resistance, pore distribution and SEM observation were investigated in this work. As a result, physical properties of polymer mortar were observed to have remarkably improved with an increase of polymer binder, but greatly deteriorated with an increase of substitution quantity of waste concrete powder.