• Title/Summary/Keyword: polymer stability

Search Result 1,291, Processing Time 0.033 seconds

Plastic LCDs Using Pixel Isolated LC mode

  • Jung, Jong-Wook;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1220-1222
    • /
    • 2004
  • We developed a new device structure using anisotropic phase separation from liquid crystal (LC) and polymer composite materials using UV intensity variation and polymer wetting properties. In the device, the LC molecules are isolated in pixels where LCs are surrounded by the inter-pixel vertical polymer walls and the horizontal polymer films on the upper substrate. These devices show very good mechanical stability against external pressure. The electro-optic characteristics and the mechanical stability of the devices are discussed in view of the flexible display applications.

  • PDF

Semi-interpenetrated Polymer Network of Sulfonated Poly(Styrene-Divinylbenzene-Acrylonitrile) based on PVC Film for Polymer Electrolyte Membranes

  • Yun, Sung-Hyun;Woo, Jung-Je;Seo, Seok-Jun;Park, Jung-Woo;Oh, Se-Hun;Moon, Seung-Hyeon
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • The sulfonated poly(styrene-divinylbenzene-acrylonitrile) (ST-DVB-AN) composite polymer electrolyte membrane based on the original PVC film was successfully synthesized to improve oxidative stability using semi-interpenetrated polymer network (semi-IPN). Weight gain ratio after copolymerization was enhanced by the DVB and AN contents, and the sulfonated membranes were characterized in terms of proton conductivity (k), ion exchange capacity (IEC), and water uptake ($W_U$). The effect of DVB content and AN addition were thoroughly investigated by comparing the resulted properties including oxidative stability. The obtained ST-DVB-AN composited semi-IPN membranes showed relatively high proton conductivity and IEC compared with Nafion117, and greatly improved oxidative stability of the synthesized membrane was obtained. This study demonstrated that a semi-interpenetrated sulfonated ST-DVB-AN composited membrane reinforced by PVC polymer network is a promising candidate as an inexpensive polymer electrolyte membrane for fuel cell applications.

Stability-Enhanced Liquid Crystal Mode for Flexible Display Applications

  • Jung, Jong-Wook;Jang, Se-Jin;Lee, You-Jin;Kim, Hak-Rin;Jin, Min-Young;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • We demonstrated stability-enhanced liquid crystal (LC) displays using pixel-isolated LC mode in which LC molecules are isolated in pixel by horizontal polymer layer and vertical polymer wall. The device shows good electro-optic properties against external point or bending pressure due to the polymer structures. The polymer wall acts as supporting structure from mechanical pressure and prevents the cell gap from bending. Moreover, the polymer layer acts as an adhesive to ensure a tight attachment of the two substrates. We present herein various methods for producing polymer structures by using an anisotropic phase separation from LC and polymer composites or patterned micro-structures for stable flexible liquid crystal displays.

Effect of associating polymer on the dispersion stability and rheology of suspensions

  • Otsubo, Yasufumi;Horigome, Misao
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Associating polymers are hydrophilic long-chain molecules to which a small amount of hydrophobic groups (hydrophobes) is incorporated. In aqueous solution, the association interactions result in the formation of three-dimensional network through flowerlike micelles at high concentrations. In colloidal suspensions, the associating polymers act as flocculated by bridging mechanism. The rheological properties of suspensions flocculated by associating polymers end-capped with hydrophobes are studied in relation to the bridging conformation. At low polymer concentrations, the polymer chains effectively form bridges between particles by multichain association. The suspensions are highly flocculated and show typical viscoelastic responses. When the polymer concentration is increased above the absorbance at saturation, the excess polymer chains remaining in the solution phase build up three-dimensional network by associating interactions. Since the presence of particles does not significantly influence the network structures in the medium, the relative viscosity, which gives a measure of the degree of flocculation is decreased with increasing polymer concentration. The bridging conformation and flocculation level vary strongly depending on the polymer concentrations.

Stability-Enhanced Liquid Crystal Mode for Flexible Display Applications

  • Jung, Jong-Wook;Jang, Se-Jin;Lee, You-Jin;Kim, Hak-Rin;Jin, Min-Young;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.687-691
    • /
    • 2005
  • We demonstrated stability-enhanced liquid crystal (LC) displays using pixel-iosolated LC mode in which LC molecules are isolated in pixel by horizontal polymer layer and vertical polymer wall. The device shows good electro-optic properties with external pressure and bending due to the polymer structures. The polymer wall acts as supporting structure from mechanical pressure and maintains the cell gap from bending. Moreover, the polymer layer acts as adhesive for tight attachment of two substrates. We presented various methods to produce the polymer structures by using anisotropic phase separation from LC and polymer composites or patterned micro-structures.

  • PDF

Effect of Poly(vinyl alcohol) Adhesives on the Dimensional Stability of LCD Polarizer (폴리(비닐 알코올) 접착제가 LCD 편광판의 치수안정성에 미치는 영향)

  • Suh, Ju-Hee;Shin, Jung-Woo;Kim, Hyo-Kap;Kim, Han-Sung;Kim, Yong-Won;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.560-564
    • /
    • 2010
  • Dimensional stability of LCD polarization film consisted of triacetyl cellulose (TAC) and poly(vinyl alcohol) (PVA) film has been studied and especially, the effect of PVA adhesive on the dimensional stability has been considered as function of deacetylation and molecular weight of PVA adhesive. The maximum adhesion strength between TAC and PVA film was obtained in the laminate using PVA adhesive with 70% of OH content and the effect of molecular weight on the adhesion strength was only pronounced in the laminate using PVA adhesive with OH content above 70%. It was found that the optimum dimensional stability of TAC/PVA/TAC laminate (polarizing film) was obtained when applied PVA adhesive has low molecular weight and it was more dependent upon the OH content than the adhesion strength between TAC and PVA films.

Ionic Liquid as a Solvent and the Long-Term Separation Performance in a Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Char, Kook-Heon;Kim, Jong-Hak;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2007
  • The reduction behavior of silver ions to silver nanoparticles is an important topic in polymer/silver salt complex membranes to facilitate olefin transport, as this has a significant effect on the long-term performance stability of the membrane. In this study, the effects ofthe solvent type on the formation of silver nanoparticles, as well as the long-term membrane performance of a solid polymer/silver salt complex membrane were investigated. These effects were assessed for solid complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_4$, using either an ionic liquid (IL), acetonitrile (ACN) or water as the solvent for the membrane preparation. The membrane performance test showed that long-term stability was strongly dependent on the solvent type, which increased in the following order: IL > ACN >> water. The formation of silver nanoparticles was more favorable with the solvent type in the reverse order, as supported by UV-visible spectroscopy. The poor stability of the $(PVP)/AgBF_4$ membrane when water was used as the solvent might have been due to the small amount of water present in the silver-polymer complex membranes actively participating in the reduction reaction of the silver ions into silver nanoparticles. Conversely, the higher stability of the $(PVP)/AgBF_4$, membrane when an IL was used as the solvent was attributable to the cooperative coordination of silver ions with the IL, as well as with the polymer matrix, as confirmed by FTIR spectroscopy.

Development of Pore-filled Polymer Electrolyte Membranes for Flexible Electrochromic Devices (유연한 전기변색 소자를 위한 세공충진 고분자 전해질 멤브레인의 개발)

  • Park, Hyeon-Jung;Lee, Ji-Hyeon;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.333-342
    • /
    • 2021
  • A flexible electrochromic device (ECD) is a promising technology that is expected to be applied in various fields such as smart windows. Polymer electrolyte is an important component that determines the bleaching-coloration performance and physical stability of flexible ECDs. In this study, a pore-filled polymer electrolyte membrane (PFPEM) with excellent dimensional stability was developed to effectively fabricate flexible ECDs and improve durability. Polyvinyl acetate, which has excellent adhesion, and polyethylene glycol, which can improve ionic conductivity, were filled in the pores of a porous substrate made of polyethylene, which is inexpensive and has excellent physical and chemical stability. The optimal lithium salt (LiTFSI) content of the prepared PFPEM was determined at about 27 wt%, and it was confirmed to possess excellent dimensional stability, adhesive strength, and ion conductivity close to that of conventional polymer electrolytes. Although the visible light transmittance was lowered by the use of the porous substrate, it was expected to act as an advantage in the colored state.

Pretilt Angel Generation and Alignment Stability for Nematic Liquid Crystal Using a Photodimerization Method (광중합법을 이용한 네마틱액정의 배향 안정성 및 프리틸트각의 발생)

  • 황정연;서대식;김재형;한은주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.336-340
    • /
    • 2001
  • We have investigated the generation of pretilt angle and alignment stability for a nematic liquid crystal (NLC) with obliquely polarized UV exposure on the three kinds of photo-polymer. High pretilt angle of the NLC was obtained by polarized UV exposure on a PM4Ch surface for 1 min. But, the low pretilt angle of he NLC on a PVCi surface was observed. The pretilt angle generated is attributed ot the photosensitivity by the long side chaining of photo-polymer. Also, a good thermal stability of the three kinds of photo-polymer were obtained by thermogravimetric analysis (TGA) measurement until 300$^{\circ}C$. Finally, the good LC aligning capabilities using the photodimerization method were observed by annealing-treatment until 150$^{\circ}C$.

  • PDF

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF