• Title/Summary/Keyword: polymer residue

Search Result 64, Processing Time 0.016 seconds

Synthesis of Doped Polymethylphenylsilane Conductive Polymers and their Structure Characteristics (포리메틸페닐실란계 전도성 고분자의 합성과 구조 특성)

  • Yang, Hyun-Soo;Kang, Phil-Hyun;Kim, Jeong-Soo;Ryu, Hae-il;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.954-962
    • /
    • 1996
  • Four kind of polysilanes which had side chains of methyl, phenyl, and mixed structures, were synthesized and modified by doping with iodine. The structural, thermal, and electric characteristics of obtained polymers were systematically observed with iodine, The structural, thermal, and electric characteristics of obtained polymers were systematically observed with FT-IR, UV/VIS, TGA/DTG, DSC, and measurement of electric conductivity. From FT-IR spectra, it was confirmed that the synthesized polysilanes had side chains of methyl, phenyl, and mixed structures. The thermal stabilities of the polymers were found to increase with phenyl substituents. The polysilanes with phenyl side groups showed ${\sigma}-{\sigma}*$ transition absorption at wavelengths longer than 350 nm. The bathochromic shift of polysilanes with phenyl substituents relates probably to the narrowed band gap caused by delocalization of ${\pi}$-electron. The polymers doped with iodine showed multi-step pyrolysis behavior and higher residue compared with that of the undoped polymers. The electric conductivities of the undoped and doped polysilanes were $10^{-5}S/cm$ and $10^{-4}S/cm$, respectively.

  • PDF

Effect of Silicone Rubber Content on Thermal Stabilities of EPDM/Silicone Blends (실리콘고무 함량이 EPDM 고무의 열적 안정성에 미치는 영향)

  • Park, Soo-Jin;Kim, Jong-Hak;Joo, Hyeok-Jong;Jin, Fan-Long
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.266-271
    • /
    • 2005
  • In this work, the thermal stability factors, such as the thermal decomposition temperature, decomposition activation energy ($E_d$), and char yield, were measured to investigate the effect of silicone rubber (SR) content on the thermal stabilities of EPDM/SR blends. As a result, the thermal decomposition curve of EPDM/SR blends was similar to the neat EPDM rubber at 10 wt% SR and the thermal decomposition temperature increased above this content. The $E_d$ value of EPDM rubber initially decreased and then was constant above 20 wt% weight losses. The $E_d$ of EPDM/SR blends was higher than that of the neat EPDM rubber and then decreased with increasing the weight loss when the SR content was in the range of 10-20 wt%. Whereas the $E_d$ of the blends was lower than that of the EPDM rubber and then decreased with increasing the weight loss when 30 wt% SR was added. The char yield at $800^{\circ}C$ increased with increasing the SR content, because the decomposition of silane groups in the backbone was capable of forming a silane-rich residue after the initial stage of thermal degradation, which finally prevents further heat transfer and diffusion in the blends.

Study of Heating Temperature and Quantification Conditions of Standard Water for Evaluating Hair Water Content (모발 수분 함량 평가를 위한 가열 온도와 기준 수분 정량 조건 연구)

  • Sang-Hun Song;Jangho Joo;Hyun Sub Park;Seong Kil Son;Nae-Gyu Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • Recently, there have been attempts to claim the hair moisturizing effect for a hair care product, however there has not yet been an official evaluation method because heating temperature for hair has not been established. This study was conducted to establish a quantitative evaluation for hair water content. In order to observe the behavior of water inside hair, heat was applied to hair with various temperatures using thermogravimetric dry residue. As the heating temperature increased, the amount of moisture released from the hair increased. As a result of evaluating hair using a differential scanning calorimeter (DSC), a unique phenomenon in which a rapid endothermic reaction occurs around 75 ℃ was observed. This phenomenon was also observed in different ethnic hair. In hair that damaged the hair cuticle barrier with oxidation and heat, this rapidly rising endothermic reaction temperature occurred at 77 ℃, which was slightly higher, and 73 ℃ was observed when this hair was applied with polar oil, conditioning polymer, or keratin protein. To determine how this reaction affects the hair surface, friction test was performed using an atomic force microscope. When heated above 75 ℃, cuticle friction increased, however when heated above 90 ℃, there was no change in hair cuticle friction. Finally, it was confirmed that around 75 ℃ is the critical temperature at which desorption of water bound to the hair occurs. It is suggested that a heating temperature of 75 ℃ is the optimal temperature for detecting and quantifying the moisture content of hair, and that approximately 10% detected at 75 ℃ can be a standard value for hair moisture content.

Fenton-like Reaction for Treatment of Petroleum-Contaminated Silty Clay after Soil Washing Process (토양세척 후의 유류 오염 Silty Clay 처리를 위한 유사펜톤 산화반응)

  • So, Myung-Ho;Ha, Ji-Yeon;Yu, Jae-Bong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This research was performed to assess a Fenton-like oxidation using naturally present iron in the field to treat remained oils throughout silty clay residues which finally resided even after a series of soil washing process. Biodegradability was thus tested for reaction products to investigate a possible treatment of the Fenton-like oxidation coupled with a biological treatment process. For those purposes, two types of field soil samples (e.g., dewatered cake after conditioning with a polymer and not-dewatered residue) were tested to remove TPH by adding the various concentration of hydrogen peroxide ($H_2O_2$). Moreover the biodegradability of treated samples was observed based on the ratio of $BOD_5/COD_{Cr}$ after Fenton-like oxidation. The Highest removal of TPH was at 1% of hydrogen peroxide ($H_2O_2$) when hydrogen peroxide ($H_2O_2$) was continuously injected for a period of time rather than that of spot introduction with the same amount of it. For the dewatered cake, TPH was effectively treated when the ratio of solid and water was mixed at 1 : 2. Employing cooking oil could increase solubility of TPH due to enhanced surface-active escalating TPH desorption from silty clay. Nonetheless, the biodegradability was decreased as long as the oxidation duration being extended regardless of operational conditions. It was therefore proved that Fenton-like oxidation using $H_2O_2$ and natural iron minerals was able to remove adsorbed oils in silty clay but the removal efficiency of TPH was low. And if a biological treatment process followed after Fenton-like oxidation, microorganisms would need enough time for acclimation.