• Title/Summary/Keyword: polymer residue

Search Result 64, Processing Time 0.029 seconds

Simultaneous Transfer and Patterning of CVD-Grown Graphene with No Polymeric Residues by Using a Metal Etch Mask

  • Jang, Mi;Jeong, Jin-Hyeok;Trung, T.Q.;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.642-642
    • /
    • 2013
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as high electron mobility, high thermal conductivity and optical transparency. Especially, chemical vapor deposition (CVD) grown graphene has been used as a promising material for high quality and large-scale graphene film. Unfortunately, although CVD-grown graphene has strong advantages, application of the CVD-grown graphene is limited due to ineffective transfer process that delivers the graphene onto a desired substrate by using polymer support layer such as PMMA(polymethyl methacrylate). The transferred CVD-grown graphene has serious drawback due to remaining polymeric residues generated during transfer process, which induces the poor physical and electrical characteristics by a p-doping effect and impurity scattering. To solve such issue incurred during polymer transfer process of CVD-grown graphene, various approaches including thermal annealing, chemical cleaning, mechanical cleaning have been tried but were not successful in getting rid of polymeric residues. On the other hand, lithographical patterning of graphene is an essential step in any form of microelectronic processing and most of conventional lithographic techniques employ photoresist for the definition of graphene patterns on substrates. But, application of photoresist is undesirable because of the presence of residual polymers that contaminate the graphene surface consistent with the effects generated during transfer process. Therefore, in order to fully utilize the excellent properties of CVD-grown graphene, new approach of transfer and patterning techniques which can avoid polymeric residue problem needs to be developed. In this work, we carried out transfer and patterning process simultaneously with no polymeric residue by using a metal etch mask. The patterned thin gold layer was deposited on CVD-grown graphene instead of photoresists in order to make much cleaner and smoother surface and then transferred onto a desired substrate with PMMA, which does not directly contact with graphene surface. We compare the surface properties and patterning morphology of graphene by scanning electron microscopy (SEM), atomic force microscopy(AFM) and Raman spectroscopy. Comparison with the effect of residual polymer and metal on performance of graphene FET will be discussed.

  • PDF

Oxidation Resistance and Graphitization of Boron Oxide Implanted Carbon/Carbon Composites

  • Joo, Hyeok-Jong;Oh, In-Hwan;Ahn, Il-Hwan
    • Carbon letters
    • /
    • v.5 no.3
    • /
    • pp.127-132
    • /
    • 2004
  • Chop molding composites and 2D carbon/carbon composites were manufactured by hot press molding method. Phenol resin of novolac type was used for matrix precursor and PAN-based carbon, PAN-based graphite and pitch-based carbon fiber were used for reinforcement and boron oxide was used for oxidation retardant. All of the composites were treated by $2000^{\circ}C$ and $2400^{\circ}C$ graphitization process, respectively. After graphitization process, amount of a boron residue in carbon/carbon composites is much according to irregularity of used raw materials. Under the presence of boron in carbon/carbon composites, catalytic effect of boron was a little at $2000^{\circ}C$ graphitization temperature. However, it was quite at $2400^{\circ}C$ graphitization.

  • PDF

Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix

  • Maeta, Eri;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.163-174
    • /
    • 2014
  • The objective of this study is to prepare an artificial extracellular matrix (ECM) for cell culture by using polymer hydrogels. The polymer used is a cytocompatible water-soluble phospholipid polymer: poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-n-butyl methacrylate-p-nitrophenyloxycarbonyl poly(ethylene oxide) methacrylate (MEONP)] (PMBN). The hydrogels are prepared using a cross-linking reaction between PMBN and diamine compounds, which can easily react to the MEONP moiety under mild conditions. The most favorable diamine is the bis(3-aminopropyl) poly(ethylene oxide) (APEO). The effects of cross-linking density and the chemical structure of cross-linking molecules on the mechanical properties of the hydrogel are evaluated. The storage modulus of the hydrogel is tailored by tuning the PMBN concentration and the MEONP/amino group ratio. The porous structure of the hydrogel networks depends not only on these parameters but also on the reaction temperature. We prepare a hydrogel with $40-50{\mu}m$ diameter pores and more than 90 wt% swelling. The permeation of proteins through the hydrogel increases dramatically with an increase in pore size. To induce cell adhesion, the cell-attaching oligopeptide, RGDS, is immobilized onto the hydrogel using MEONP residue. Bovine pulmonary artery endothelial cells (BPAECs) are cultured on the hydrogel matrix and are able to migrate into the artificial matrix. Hence, the RGDS-modified PMBN hydrogel matrix with cross-linked APEO functions as an artificial ECM for growing cells for applications in tissue engineering.

Removal of Polymer residue on Graphene by Plasma treatment

  • Yun, Hye-Ju;Jeong, Dae-Seong;Lee, Geon-Hui;Sim, Ji-Ni;Lee, Jeong-O;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.375.2-375.2
    • /
    • 2016
  • 그래핀(Graphene)은 원자 한 층 두께의 얇은 특성에 기인하여 우수한 투과도(~97.3%)를 나타내며, 높은 전자 이동도($200,000cm^2V^{-1}s^{-1}$)로 인하여 전기 전도도가 우수한 2차원 전자소재이다. 또한 유연하고 우수한 기계적 물성을 가지고 있어 실제로 다양한 소자에서 활용되고 있다. 그래핀을 이용하여 다양한 소자로 응용하기 위한 과정 중 하나인 포토리소그래피 공정(Photolithography process)은 원하는 패턴을 만들기 위해 제작하고자 하는 기판 위에 포토레지스트(Photoresist)를 코팅하는 과정을 거치게 된다. 하지만 이러한 과정은 소자 제작에 있어서 포토레지스트 잔여물을 남기게 된다. 그래핀 위에 남은 포토레지스트 잔여물은 그래핀의 우수한 전기적 특성을 저하시켜 소자특성에 불이익을 주게 된다. 본 연구에서는 수소 플라즈마를 이용하여 그래핀 위에 남은 중합체(Polymer) 잔여물을 제거한다. 사용한 그래핀은 화학 기상 증착법(Chemical vapor deposition)을 이용하여 성장시켰으며, PMMA(Poly(methyl methacrylate))를 이용하여 이산화규소(silicon dioxide) 기판에 전사하였다. 그래핀의 손상 없이 중합체 잔여물을 제거하기 위해 플라즈마 처리시간을 15초부터 1분까지 늘려가며 연구를 진행하였으며, 플라즈마 처리 시간에 따른 중합체 잔여물의 제거 정도와 그래핀의 보존 여부를 확인하기 위해 라만 분광법(Raman spectroscopy)과 원자간력현미경(Atomic force microscopy)을 사용하였다. 본 연구 결과를 통해 간단한 플라즈마 처리로 보다 나은 특성의 그래핀 소자를 얻게 됨으로써, 향상된 특성을 가진 그래핀 소자로 산업적 응용 가능성을 높일 수 있을 것이라 생각된다.

  • PDF

The Kinetics and Activation Energy for the Mutarotation or Optically Active Poly(trans-5-methyl-L-proline (광활성 Poly(trans-5-methyl-L-proline)의 변광회전에 대한 반응속도와 활성화에너지)

  • Han Man Jung
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.386-395
    • /
    • 1978
  • The rates of the forward mutarotation of poly(trans-5-methyl-L-proline) in trifluoro-ethanol and of the reverse mutarotation in trifluoroethanol-n-butanol (1:4 v/v) have been measured at a number of temperatures and polymer concentrations. It was found that both mutarotations are of first-order with respect to the polymer concentration. A modified Arrhenius equation to evalute the activation energy was derived for the reaction kinetics, in which the relation between the measured physical properties and concentration, and the order of tle reaction are uncertain. The activation energies for the forward and reverse mutarotation were found to be 32.5 and 33.5 kcal per residue mole, respectively, which are about 10 kcal per residue mole higher than the $E_a$ for the mutarotation of polyproline (the resonance energy of amide bonds). The excessive quantity of the activation energy was attributed to the steric barrier between carbonyl and methyl groups during the cis-trans isomerization of amide bonds in the polymer.

  • PDF

Polymerization of Methyl Methacrylate with Phenylsilane

  • 유희권;박선희;박진영;양수연;함희숙;김환기
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.373-376
    • /
    • 1996
  • The bulk thermal and photopolymerization of methyl methacrylate(MMA) with phenylsilane were performed to produce poly(MMA)s containing phenylsilyl moiety presumably as an end group. It was found for both thermal and photopolymerization that while the polymerization yields and polymer molecular weights decreased as the relative phenylsilane concentration increases, the TGA residue yields and the relative intensities of SiH IR stretching bands increased with increasing molar ratio of phenylsilane over MMA. The polymerization yield, molecular weight, and TGA residue yield for the thermal polymerization were higher than those for the photopolymerization. Thus, the phenylsilane seemed to significantly influence on the polymerization as both chain initiation and chain transfer agents. However, an appreciable silane effect was not observed on the thermal and photopolymerization of 4-vinylpyridine, acrylonitrile, styrene, and vinyltrimethoxysilane.

Annealing Effect on Structure of Poly(trimethylene terephthalate) Undrawn Fibers

  • Murase, Shigemitsu;Ohtaki, Manabu
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.59-60
    • /
    • 2003
  • The undrawn monofilament of poly (trimethylene terephthalate) (PTT) was obtained by melt-spinning. After being annealed at 40 C it was analyzed by the measurements of DSC, DMA, WAXD and ATR FT-IR. Tg of PTT fiber after annealing for more than 96 hours was 20 C higher than that before annealing as determined by the DSC and DMA measurements. The WAXD analysis showed very weak diffraction peaks at 2$\theta$=17$^{\circ}$ and 2$\theta$=24$^{\circ}$ for the annealing time of more than 96 hours. The ATR FT-IR measurements made clear the conformational change of methylene chains of PTT glycol residue from random to gauche-gauche conformation.

  • PDF

Evaluation of Bulk-Sensitive Structural Characteristics of Oxidized Single-Walled Carbon Nanotubes using Solution Phase Optical Spectra

  • Lee, Geon-Woong;Bang, Dae-Suk;Cho, Dong-Hwan;Kumar, Satish
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.307-312
    • /
    • 2007
  • A method for evaluating bulk sensitive structural characteristics of unpurified, as-purified, and acid treated single walled carbon nanotubes (SWNTs) was described in the present study. The optical spectra of SWNT solutions were well resolved after prolonged sonication and they were correlated to the diameter and the distribution of nanotubes. The acid-treated SWNTs were similar to as-purified SWNTs in terms of catalyst residue, radial breathing mode (RBM) in the Raman spectra, and the first band gap energy of semiconducting tubes in the optical spectra. The solution phase optical spectra were more sensitive to changes in the small diameter and metallic tubes after the acid treatment than were the RBM spectra.

Thermal and Dynamic-Mechanical Characterization of Rice-Husk Filled Polypropylene Composites

  • Rosa, Simone M.L.;Nachtigall, Sonia M.B.;Ferreira, Carlos A.
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 2009
  • Natural fiber-filled polymer composites have attracted great interest due to increasing environmental concerns and their low costs. In this study, the properties of rice husk flour-filled polypropylene (PP) were analysed in view of the large quantities of this agricultural product available as residue in Brazil. The rice husk flour (RHF) was characterized by SEM and particle size distribution. The properties of the composites were studied by MFI, DMA, DSC and TGA analyses. A commercial PP modified with maleic anhydride (MAPP) was used as coupling agent. It was verified that RHF decreased the MFI of the composites and that the coupling agent decreased it even more. The efficiency of MAPP was confirmed by the high storage modulus and high loss factor of the coupled composites.

Characterization of Surface Damage and Contamination of Si Using Cylindrial Magnetron Reactive Ion Etching

  • Young, Yeom-Geun
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.482-496
    • /
    • 1993
  • Radiation damage and contamination of silicons etched in the $CF_4+H_2$ and $CHF_3$ magnetron discharges have been characterized using Schottky diode characteristics, TEM, AES, and SIMS as a function of applied magnetic field strength. It turned out that, as the magnetic field strength increased, the radiation damage measured by cross sectional TEM and by leakage current of Schottky diodes decreased colse to that of wet dtched samples especially for $CF_4$ plasma etched samples, For $CF_4+H_2$and $CHF_3$ etched samples, hydrogen from the plasmas introduced extended defects to the silicon and this caused increased leakage current to the samples etched at low magnetic field strength conditions by hydrogen passivation. The thickness of polymer with the increasing magnetic field strength and showed the minimum polymer residue thickness near the 100Gauss where the silicon etch rate was maximum. Also, other contaminants such as target material were found to be minimum on the etched silicon surface near the highest etch rate condition.

  • PDF