• Title/Summary/Keyword: polymer products

Search Result 483, Processing Time 0.035 seconds

Development Trends of Precast Polymer Concrete Products (프리캐스트 폴리머 콘크리트의 개발동향)

  • 연규석;이봉학;김광우;김태경;김관호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.99-104
    • /
    • 1992
  • There is a limit manufacturing precast products for the construction industry using conventional cement concrete and precast iron due to many reasons. Therefore, precast product technologies using polymer concrete are widely developed across the world because using polymer concrete can be over come this limitation. This study reviewed and analyzed the trends of development and practical usages of ploymer concrete precast products in foreign countries based on selected literatures. It was observed that polymer concrete precast products have been widely used as utility structures wall and slab members. decoration products, traffic products, hydraulic structures and industry equipments.

  • PDF

Characterization of Field-Aged Polymer Insulators for Distribution Power Systems (배전용 폴리머애자의 현장열화 특성평가)

  • 이병성;김찬영;한재홍
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.847-858
    • /
    • 2000
  • The aging characteristics of 2 kinds of 3 years field-aged distribution polymer insulators which were dismounted from 5 regions have been investigated by electrical test and material characterization. Although the tan $\delta$of specimens prepared from weathershed was increased with surface aging, the tan $\delta$and leakage current of real products had no difference between virgin and dismounted ones. Due to the aging, all dismounted polymer insulators had micro-cracks on the surface of weathershed and only the products of manufacturer B showed the reduction of OIT(oxidation induction time). But, there were no differences between virgin and dismounted products in contact angle and chemical structure. Therefore, it can be considered that the aging is only limited on the surface of dismounted polymer insulators and that NMR technique are very useful to evaluate the aging of polymer materials.

  • PDF

Development of Powder Utilization of Waste Rubber

  • Kim, Jin-Kuk;Lee, Sung-Hyo;Hwang, Sung-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.220-224
    • /
    • 2001
  • Waste tires are a significant problem with the increasing in number of automobiles. Therefore, many researches have been studied on this field. Recycling is the one of the popular method aspect to environmental and economical in the treatment methods of the waste tire, which loads that the reuse of scrap tire rubber has been a challenge in the past. However, it is not easy method to melt down and mold into new products because the in rubber is a cross-linked polymer. Most difficulty in recycling is the recycled product is not economic. Therefore, the goal of this study is to develop the high valuable products for reused waste tires. In this paper, we try to make an economic recycled technology using scrapped waste tires. This technology may applied for manufacturing the end products such as a rubber block and a ballast mat for high-speed train.

  • PDF

Optimal Culture Conditions for Mycelial Growth and Exo-polymer Production of Ganoderma applanatum

  • Jeong, Yong-Tae;Jeong, Sang-Chul;Yang, Byung-Keun;Islam, Rezuanul;Song, Chi-Hyun
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.89-93
    • /
    • 2009
  • The effect of fermentation parameters and medium composition on the simultaneous mycelial growth and exo-polymer production from submerged cultures of Ganoderma applanatum was investigated in shake-flask cultures. The optimum initial pH for mycelial growth and exo-polymer production was 5.0 and 6.0, respectively. The optimum temperature was $25^{\circ}C$ and the optimum inoculum content was 3.0% (v/v). The optimal carbon and nitrogen sources were glucose and corn steep powder, respectively. After 12 days fermentation under these conditions, the highest mycelial growth was 18.0 g/l and the highest exo-polymer production was 3.9 g/l.

Flexural Behavior of Polymer Mortar Permanent Forms Using Methyl Methacrylate Solution of Waste Expanded Polystyrene

  • Bhutta, M. Aamer Rafique;Tsuruta, Ken;Ohama, Yoshihiko
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • This experimental study examines the applicability of polymer mortar permanent forms using a methyl methacrylate (MMA) solution of waste expanded polystyrene (EPS) to develop effective recycling processes for the EPS, referring to the flexural behavior of a polymer-impregnated mortar permanent form with almost the same performance as commercial products. An MMA solution of EPS is prepared by dissolving EPS in MMA, and unreinforced and steel fiber-reinforced polymer mortars are mixed using the EPS-MMA-based solution as a liquid resin or binder. Polymer mortar permanent forms (PMPFs) using the EPS-MMA-based polymer mortars without and with steel fiber and crimped wire cloth reinforcements and steel fiber-reinforced polymer-impregnated mortar permanent form (PIMPF) are prepared on trial, and tested for flexural behavior under four-point (third-point) loading. The EPS-MMAbased PMPFs are more ductile than the PIMPF, and have a high load-bearing capacity. Consequently, they can replace PIMPF in practical applications.

Value-added Polyolefin Products

  • Ok, Myung-Ahn
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.152-152
    • /
    • 2006
  • Polyolefins show a very healthy growth rate among commodity polymer resins due to their low feedstock prices, recyclable and environmentally friendly characteristics and easily controllable performances. Capacity investment in polyolefin field is now moving from technology region to consumer region and feedstock region. Therefore, key success factors for polyolefin business in the other region such as Korea are cost reduction, development of highly value-added products and new applications and substitution of PVC, PS, PET and other EPs. To add additional value to commodity polyolefin products, high level of platform technology such as catalyst, process and structure-properties relationship is needed. Progress on polyolefin products has been very closely related to catalyst and process technology. According to this trend, SK Corporation has devoted a lot of research effort into development of new value-added polyolefin products based on the proprietary technology platform.

  • PDF

Performance Evaluation of Prepackaged-Type Low Shrinkage Surface Preparation materials Using Redispersible Polymer Powder (재유화형 분말수지를 이용한 프리페키지드형 저수축 표면조정재의 성능평가)

  • ;Demura, Katsunori
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.368-373
    • /
    • 1998
  • Prepackaged system consists out of a dry mix which contains cement, sand, redispersible polymer powder and admixtures in the right proportions. The purpose of this study is to evaluate the quality of prepackaged-type polymer-modified mortar products using redispersible poly(ethylene-vinyl acetate)(EVA) powder. Polymer-modified mortars using the redispersible polymer powder with powdered with powdered shrinkage-reducing agent were prepared with cellulose fiber contents of 0, 0.5, 1.0% and shrinkage-reducing agent contents of 0, 4%, and tested for drying shrinkage, strength, adhesion in tension, water absorption. From the test results, the prepackaged-type polymer-modified mortar products with 4% of shrinkage-reducing agent content give good properties. and that their properties largely depends on the shrinkage-reducing agent content rather than the cellulose fiber contents.

  • PDF

Development of Lightweight Polymer Concrete Using Synthetic Lightweight Aggregate and Application for Bottom Draining Structure (인공경량골재를 활용한 경량 폴리머 콘크리트의 개발 및 바닥배수구조물에의 적용)

  • 성찬용;김영익;윤준노
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.846-851
    • /
    • 2003
  • This study was performed to develop the lightweight polymer concrete using expanded clay and perlite to improve workability, durability and chemical resistance for bottom draining structure under severe condition. This paper was composed of two parts. One is to invest the physical and mechanical properties of lightweight polymer concrete using synthetic lightweight aggregate, the other is to the develop products for bottom draining structure. Physical and mechanical test for lightweight polymer concrete was performed unit weight, compressive and flexural strength, chemical resistance, accelerated weathering test, absorption ratio and optimum mix for lightweight polymer concrete was designed. Also, products for bottom draining structures by optimum mix of lightweight polymer concrete was made draining trench of small size.

  • PDF

Physical and Mechanical Properties of Permeable Polymer Concrete Utilizing industrial By-Products

  • Sung, ChanYong;Kim, In Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.78-84
    • /
    • 2000
  • Permeable polymer concrete can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study is to explore a possibility of utilizing industrial by-products, a blast furnace slag and a fly ash, as fillers for permeable polymer concrete. Different mixing proportions are tried to find an optimum mixing proportion of permeable polymer concrete. The tests are carried out at 20$\pm$1$^{\circ}C$ and 60$\pm$2$^{\circ}C$ relative humidity. At 7 days of curing, compressive, flexural and splitting tensile strengths and water permeability ranged between 239~285kgf/$\textrm{cm}^2$, 107~133kgf/$\textrm{cm}^2$, 37~46kgf/$\textrm{cm}^2$ and 4.612~5.913$\ell$/$\textrm{cm}^2$/h, respectively. It is concluded that the blast furnace slag and fly ash can be used in permeable polymer concrete.

  • PDF