• Title/Summary/Keyword: polymer particle

Search Result 730, Processing Time 0.024 seconds

Probe and Matrix Diffusion of Polystyrene Particle and Labeled Polyallylamine Hydrochlorate

  • Choi, Young-Wook;Sohn, Dae-Won
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.205-205
    • /
    • 2006
  • Adsorption behaviors of positively charged matrix (PAH) onto negatively charged probe (sulfate PS particle) were investigated using DLS (dynamic light scattering) and FPR (fluorescence photobleaching recovery) as view points of matrix and salt concentration. The system experienced sharp decrease of diffusion (flocculation) at dilute condition while the system underwent gradual decrease of diffusion above semi-dilute concentration. With FPR and viscometry experiments, we revealed the probe behaviors in polyelectrolyte solution were strongly affected by the coil overlap concentration (0.5 g/L PAH concentration).

  • PDF

Effects of Demineralized Bone Particle Loaded Poly(lactic-co-glycolic acid) Scaffolds on the Attachment and Proliferation of Costal Cartilage Cells (탈미네랄화된 골분/PLGA 지지체에서 늑연골 세포의 부착과 성장에 미치는 영향)

  • Cho, Sun Ah;Song, Jeong Eun;Kim, Kyoung Hee;Ko, Hyun Ah;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.632-637
    • /
    • 2013
  • It has been widely accepted that costal cartilage cells (CCs) have more excellent initial proliferation capacity than articular cartilage cells as well as the easiness for isolation and collection. This study demonstrated that CCs might be one of the substitutes for articular cartilage cells by tissue engineered cartilage. Poly(lactic-co-glycolic acid) (PLGA) has been extensively tested and used as scaffold material but it was limited by the low attachment of cells and the induction of inflammatory cells. Base on previous our studies, we confirmed demineralized bone particle (DBP) had the power of the reduction of inflammatory reaction and the stimulation proliferation of cells. We fabricated PLGA scaffold loaded with 10, 20, 40 and 80 wt% DBP and then tested the possibility of the regeneration of cartilage using CCs. Assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scanning electron microscope (SEM) carried out to evaluate the attachment and proliferation of CCs in DBP/PLGA scaffolds. Glycosaminoglycan (sGAG) and collagen contents assay were conducted to confirm the effects of DBP on formation of extracellular matrix. This study demonstrated that DBP/PLGA scaffolds showed significant positive effects on cell growth and proliferation due to the vitality of DBP as well as the possibility of the application of CCs for tissue engineered cartilage.

Process for the Preparation of Conducting Polymer Composites (I) : Effect of the Porosity on the Conductivity (전도성 고분자 복합체 제조를 위한 신합성 연구 (I) : 다공성정도가 전도성 고분자 복합체의 전도도에 미치는 영향)

  • Son, Suk-Hye;Park, Young-Jun;Kim, Jung-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.393-400
    • /
    • 1996
  • The conducting polymer composites were prepared by imbibing the porous particle with an $FeCl_3$ oxidant solution, drying the imbibed porous particle, and imbibing again with pyrrole solution for polymerization to take place in the pore. The conductivity of the porous composite particles, was higher than that of nonporous particles. Also, the conductivity of composite was increased with increasing specific surface area and pore specific volume of the host porous particles since the degree of formation of conducting polymer in the pore increased.

  • PDF

Poly(vinyl pyrrolidone) Conjugated Lipid System for the Hydrophobic Drug Delivery

  • Lee, Hye-Yun;Yu, Seol-A;Jeong, Kwan-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Water soluble polymer, poly(vinyl pyrrolidone) was chosen to conjugate with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl) (N-succinyl DPPE) to make a new drug delivery system. PVP with an amine group (amino-PVP) was polymerized by free radical polymerization. The amine group of amino-PVP was conjugated with the carboxylic group of N-succinyl DPPE. The resultant conjugate could form nanoparticles in the aqueous solution; these nanoparticles were termed a lipid-polymer system. The critical aggregation concentration was measured with pyrene to give a value of $1{\times}10^{-3}g/L$. The particle size of the lipid-polymer system, as measured by DLS, AFM and TEM, was about 70 nm. Lipophilic component in the inner part of the lipid-polymer system could derive the physical interaction with hydrophobic drugs. Griseofulvin was used as a model drug in this study. The loading efficiency and release profile of the drug were measured by HPLC. The loading efficiency was about 54%. The release behavior was sustained for a prolonged time of 12 days. The proposed lipid-polymer system with biodegradable and biocompatible properties has promising potential as a passive-targeting drug delivery carrier because of its small particle size.

A Study on the Synthesis of Starch-Acrylic Polymer by Emulsion Polymerization (유화중합에 의한 전분-아크릴 고분자의 합성에 관한 연구)

  • Lee, Mi-Suk;Ryu, Hoon;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.58-62
    • /
    • 2010
  • The acrylic monomers were graft-polymerized to starch as matrix polymer by emulsion polymerization. Viscosity and particle size of the emulsion were increased with starch contents due to interaction with water and particle swelling toward the water phase by hydroxy group of starch. Chemical stability of the emulsion was also increased with enhancement of starch, but water and alkali resistance were reduced with increasing starch contents because of the increasement of hyrophilicity. Opacity of the starch-acrylic emulsion compound containing calcium carbonate was decreased with contents of starch by its intrinsic color. The film of starch-acrylic polymer showed more clear appearance with increasing starch contents owing to enhancement of amorphous state.

Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • The impact strength and fracture behavior of rubber/polymer composites were investigated with respect to two factors: (i) characteristic ratio, $C_{\infty}$ as a measure of chain flexibility of the polymer matrix and (ii) the rubber particle size in polymer blend system. In this study C was controlled by the composition ratio of polyphenylene oxide (PPO) and polystyene (PS). Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted. Finite element analysis were carried out to gain understanding of plastic deformation mechanism (shear yielding and crazing) of these materials. Shear yielding was found to be enhanced when the flexibility of matrix polymer was relatively low and the rubber particles were small.

  • PDF

Interpretation of Morphology and Rubber-Phase Particle Size Distribution of High Impact Polystyrene (내충격성 폴리스티렌의 형태구조 및 고무상 입도분포 해석)

  • 정한균;정대원;안경현;이승종;이성재
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.744-753
    • /
    • 2001
  • One of the most important factors which affect the impact strength of high impact polystyrene (HIPS) is the rubber-phase particle size and size distribution. In this study, HIPS was prepared from a batch reactor to observe the influence of reaction conditions such as rubber content, agitation speed and prepolymerization time on the particle size and size distribution. Measurements concerning the particle size distribution were conducted using a particle size analyzer. Due to swelling, the particle suspended in toluene increases in size with lower heat-treatment temperature and shorter heat-treatment time, while the particle in methyl ethyl ketone shows quite reasonable size without any effort of heat-treatment. As rubber content increases, the average particle size increases substantially, but the increase in agitation speed at lower rubber contents does not have much influence on the size. However, the polystyrene-phase particles occluded in rubber-phase become more uniform as agitation speed increases. Longer prepolymerization time produces rubber-phase particles with narrower particle size distribution.

  • PDF

Effect of Surfactant Type on the Particle Size and Yield in Semi-Continuous Emulsion Polymerization of n-Butyl Acrylate/Methyl Metacrylate (반연속식 노말브틸-아크릴레이트/메틸메타-아크릴레이트 유화중합(1) : 폴리머 라텍스의 수율과 입자크기에 관한 계면활성제 종류의 영향)

  • Ko, Ki-Young;Kim, Sung-il;Kim, Chul-Ung;Hyung, Gi-Woo
    • Clean Technology
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • In these studies, semibatch emulsion copolymerization of n-butyl acrylate (n-BA) as adhesive component and methyl metacrylate (MMA) as coagulant component was carried out in order to investigate the role of surfactant in aqueous phase for polymer cement. It was found that the particle size and concentration of final polymer are affected by surfactant type used. The effect of nonionic surfactants was shown in the decrease of polymer emulsion concentration and small emulsion particle in order of LE-50, NP-50 > CE-50, Tween 20 > TX-405 > Brij 35. In LE and NP (n=7-50) as nonionic surfactant, it could be obtained the stable polymer emulsion of 40% in aqueous phase with average particle size of 250-320 nm using over n=30. On the other hand, the effect of surfactant type in initial reactor charge was shown that when SDS as ionic surfactant was used, the polymer emulsion concentration was constant irrespective of the amount used, whereas CTAB as cationic surfactant and HN-100 as reactive surfactant were shown a tendency to the decrease of that. The effect surfactant type on final polymer particle size was shown in decrease by the order of SDS > CTAB > HN-100.

  • PDF