• Title/Summary/Keyword: polymer mortars

Search Result 149, Processing Time 0.025 seconds

Strength Properties of Polymer-Modified Mortar with High-Range Water- Reducing Agents (고성능 감수제를 첨가한 폴리머 시멘트 모르타르의 강도 특성)

  • 이윤수;주명기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.811-815
    • /
    • 2003
  • The effects of high-range water-reducing agent (WRA) content and polymer-cement ratio on the strength properties of autoclaved SBR-modified mortars with WRA are examined. As a result, the flexural strength of the autoclaved SBR-modified mortars with WRAs tends to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0%. The compressive strength of the autoclaved SBR-modified mortars with WRAs is inclined to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0% and a polymer-cement ratio of 10%. From the test results, the addition of the WRAs is effective for improving strength properties of the autoclaved SBR-modified mortars.

  • PDF

Drying Shrinkage of High-Fluidity Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 고유동 폴리머 시멘트 모르타르의 건조수축)

  • Lee, Youn-Su;Joo, Myung-Ki;Chung, In-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.296-299
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the setting time and drying shrinkage of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the setting time of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio, regardless of the antifoamer conten,. Irrespective of the antifoamer content, the drying shrinkage of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Strength Properties of High-Fluidity Polymer-Modified Mortar (고유동 폴리머 시멘트 모르타르의 강도 특성)

  • Joo, Myung-Ki;Lee, Youn-Su;Chung, In-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.312-315
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the strength of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content, regardless of the antifoamer content. However, the compressive strength of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Properties of Strength of Ultrarapid-Hardening Polymer-Modified Mortar (초속경 폴리머 시멘트 모르타르의 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki;Yeon, Kyu-Seok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.115-118
    • /
    • 2001
  • The effects of polymer-cement ratio and shrinkage-reducing agent content on the strength properties of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Adhesion in Tension of Polymer-Modified Mortars according to Curing Conditions (양생조건에 따른 폴리머 시멘트 모르타르의 인장접착강도)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.200-201
    • /
    • 2018
  • The purpose of this study is to evaluate the adhesion in tension of polymer-modified mortars according to curing conditions. From the test results, the adhesion in tension is seriously affected by type of curing conditions compared with type of polymer dispersions or polymer-cement ratios. The maximum adhesion in tension of EVA-modified mortar with polymer-cement ratio of 20% cured by standard condition is about 1.81 times, the cement mortar cured in water. It is apparent that the adhesion in tension of polymer-modified mortars according to raising of polymer-cement ratio is also much more improved irrespective of type of polymer dispersions and curing conditions.

  • PDF

Hardening Properties of Hardener-Free Epoxy-Modified Mortars by Curing Conditions (양생조건에 따른 경화제 무첨가 에폭시수지 혼입 PMM의 경화특성)

  • Lee, Jae-Hwa;Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.255-257
    • /
    • 2012
  • Epoxy resin without any hardener can harden in the presence of hydroxide ions in cement mortars and concretes at ambient temperature. The purpose of present study is to examine the hardening properties of hardener-free epoxy-modified mortars by curing conditions. The hardener-free epoxy-modified mortars using diglycidyl ether of A epoxy resin are prepared with various polymer-cement ratios, and subjected to initial moist/dry curing, initial steam(90℃) curing, initial steam/heat(80℃, 100℃) curing.As a result, degree of hardening of epoxy resin in initial moist/dry cured, initial steam cured and initial steam/heat(80℃) cured hardener-free epoxy-modified mortars is decreased with increasing polymer-cement ratio. However, it is markedly improved with additional dry-curing periods. On the other hand, regardless of the polymer-cement ratio and dry curing periods, degree of hardening of hardener-free epoxy-modified mortars with initial steam/heat(100℃) cure is over 95%.

  • PDF

Lining of Reinforced Spun Concrete Pipes using Polymer-Modified Mortars (폴리머 시멘트 모르타르를 이용한 원심력 철근콘크리트관의 라이닝)

  • 조영국
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.406-413
    • /
    • 2001
  • Up to this day, reinforced spun concrete pipes have been widely used as drain pipes. However, many reinforced spun concrete pipes are exposed to the deteriorated environment such as freezing-thawing damage and chemical attack by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar using polymer dispersions as cement modifier on the development in durability of reinforced spun concrete pipe. The polymer-modified mortars were prepared with various polymer types and polymer-cement ratios, and tested for compressive and flexural strengths, acid, freezing-thawing, and heat resistances. And then, the reinforced spun concrete pipe product lined by polymer-modified mortars was tested for adhesion in tension and surface conditions according to curing temperatures in the field. From the test results, it is apparent that the polymer-modified mortars have good mechanical properties and durability as a lining material. In practice, all polymers can be used as lining the materials for reinforced spun concrete pipe, and types of polymer, and polymer-cement ratio and curing conditions are controlled for a good lining product.

Strengths and Corrosion-Inhibition of Epoxy-Modified Mortars Contaning Nitrite-Type Hydrocalumite (에폭시수지와 아질산형 하이드로칼루마이트를 병용한 폴리머 시멘트 모르타르의 강도 및 방청성)

  • Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.53-55
    • /
    • 2013
  • Nitrite-Type hydrocalumite (calumite) is a material that can provied a self-corrosion inhibition function to the reinforce concrete. In this study, bisphnol A·F type epoxy-midified mortars without hardner contaning calumite is prepared with various polimer-binder ratios, calumite contents and tow types of curing condition, and tested for flexural and compressive strength tensile strength and corrosion-inhibition. As a result, in the case of wet/dry curing condition, strengths of bisphnol A·F type epoxy-modified mortars without hardener contaning calumite is inclined to decrease with increasing of polymer-binder ratio and calumite content. However, dry cured specimens are slightly improved by using bisphnol A·F type epoxy resin. Finally, regardless of polymer-binder ratios and calumite contents, corrosion-inhibition of bisphnol A·F type epoxy-modified mortars without hardener containing calumite is superior than that of unmodified mortar.

  • PDF

Drying Shrinkage and Strength Properties of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 초속경 폴리머시멘트 모르타르의 건조수축 및 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

Basic Mix Proportions of Antiwashout Underwater Polymer Cement Mortar as a Repair Material (보수재료로서 수중불분리 폴리머 시멘트 모르타르의 기초적 배합)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.193-194
    • /
    • 2019
  • The purpose of this study is to design the basic mix proportions of antiwashout underwater polymer cement mortar as a repair material. The antiwashout underwater polymer cement mortars are prepared with various mix proportions using three type polymer dispersions without or with antifoamer. From the test results, the whole antiwashout underwater polymer cement mortars can be cast underwater without segregation like plain mortar. It is apparent that the flexural strength of antiwashout underwater SBR cement mortars with antifoamer at polymer- cement ratios of 5% and 10% is higher than that of plain mortar irregardless of a little low compressive strength.

  • PDF