• Title/Summary/Keyword: polymer mechanics

Search Result 261, Processing Time 0.023 seconds

Numerical Simulation of the Delamination Behavior of Polymeric Adhesive Tapes Using Cohesive Zone Element (응집 영역 요소를 이용한 고분자 접착 테이프의 박리거동 모사)

  • Jang, Jinhyeok;Sung, Minchang;Yu, Woong-Ryeol
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.203-208
    • /
    • 2016
  • Metal and polymer sandwich composites, which are made of sheet metal sheath and polymer or fiber reinforced plastic core, have been reconsidered as an alternative to sheet metal due to their lightness and multifunctional properties such as damping and sound-proof properties. For the successful applications of these composites, the delamination prediction based on the adhesion strength is important element. In this study, the numerical simulation of the delamination behavior of polymeric adhesive tapes with metallic surfaces was performed using cohesive zone elements and finite element software. The traction-separation law of the cohesive zone element was defined using the fracture energy derived from peel mechanics and experimental results from peel test and implemented in finite element software. The peel test of the polymeric adhesive film against steel surface was simulated and compared with experiments, demonstrating reasonable agreement between simulation and experiment.

Eliminating concrete cover separation of NSM strengthened beams by CFRP end anchorage

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Kamruzzaman, Mohamed;Huda, Md. Nazmul;Soeb, Mahmudur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.899-916
    • /
    • 2015
  • Upgrading or strengthening of existing reinforced concrete (RC) infrastructure is an emerging demand nowadays. Near Surface Mounted (NSM) technique is very promising approach for flexural strengthening of RC members. However, premature failure such as concrete cover separation failure have been a main concern in utilizing this technique. In this study, U-wrap end anchorage with carbon fiber reinforced polymer (CFRP) fabrics is proposed to eliminate the concrete cover separation failure. Experimental programs were conducted to the consequence of U-wrap end anchorage on the flexurally strengthened RC beams with NSM-steel. A total of eight RC rectangular beam specimens were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM-steel bars and the remaining four specimens were strengthened with NSM-steel bars and U-wrap end anchorage using CFRP fabrics. A 3D non-linear finite element model (FEM) was developed to simulate the flexural response of the tested specimens. It is revealed that NSM-steel (with and without end-anchors) significantly improved the flexural strength; moreover decreased deflection and strains compared with reference specimen. Furthermore, NSM-steel with end anchorage strengthened specimens revealed the greater flexural strength and improve failure modes (premature to flexure) compared with the NSM-steel without end anchorage specimens. The results also ensured that the U-wrap end anchorage completely eliminate the concrete cover separation failure.

Service Life Prediction of Rubber Bushing for Tracked Vehicles

  • Woo, Chang-Su;Kang, In-Sug;Lee, Kang-Suk
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • Service life prediction and evaluation of rubber components is the foundational technology necessary for securing the safety and reliability of the product and to ensure an optimum design. Even though the domestic industry has recognized the importance thereof, technology for a systematic design and analysis of the same has not yet been established. In order to develop this technology, identifying the fatigue damage parameters that affect service life is imperative. Most anti-vibration rubber components had been damaged by repeated load and aging. Hence, the evaluation of the fatigue characteristics is indispensable. Therefore, in this paper, we propose a method that can predict the service life of rubber components relatively accurately in a short period of time. This method works even in the initial designing stage. We followed the service life prediction procedure of the proposed rubber components. The weak part of the rubber and the maximum strain were analyzed using finite element analysis of the rubber bushing for the tracked vehicles. In order to predict the service life of the rubber components that were in storage for a certain period of time, the fatigue test was performed on the three-dimensional dumbbell specimen, based on the results obtained by the rubber material acceleration test. The service life formula of the rubber bushing for tracked vehicles was derived using both finite element analysis and the fatigue test. The service life of the rubber bushing for tracked vehicles was estimated to be about 1.7 million cycles at room temperature (initial stage) and about 400,000 cycles when kept in storage for 3 years. Through this paper, the service life for various rubber parts is expected be predicted and evaluated. This will contribute to improving the durability and reliability of rubber components.

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

Performance Study of High-Performance Synthetic Supporting Materials by Real-Scale Tests (실대형 시험을 통한 고성능 합성지보재의 성능 고찰)

  • Kang, Tae-Ho;Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.428-439
    • /
    • 2021
  • A spray-on membrane is a material composed of a polymer, and is a spray-type material that is expected to be able to replace materials such as existing shotcrete or sheet membrane for support or waterproofing purposes. In the previous studies, it is expected that the thickness of the support material such as shotcrete can be reduced if the spray-on membrane is additionally installed on the existing cement-based support materials. In this study, a three-point bending test was performed by a spray-on membrane on the high-performance shotcrete on the outside, and comparison was made between the case where high-performance shotcrete and a spray-on membrane were installed. As a result of comparing the values calculated through the standard test and the real-size bending test, there was no significant difference in terms of flexural strength, but it was found that there was a difference in flexural toughness.

Efficient repair of damaged FRP-reinforced geopolymeric columns using carbon fiber reinforced polymers

  • Mohamed Hechmi El Ouni;Ali Raza;Khawar Ali
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.585-599
    • /
    • 2023
  • Geopolymer concrete (GC) can be competently utilized as a practical replacement for cement to prevent a high carbon footprint and to give a direction toward sustainable concrete construction. Moreover, previous studies mostly focused on the axial response of glass fiber reinforced polymer (glass-FRP) concrete compressive elements without determining the effectiveness of repairing them after their partial damage. The goal of this study is to assess the structural effectiveness of partially damaged GC columns that have been restored using carbon fiber reinforced polymer (carbon-FRP). Bars made of glass-FRP and helix made of glass-FRP are used to reinforce these columns. For comparative study, six of the twelve circular specimens-each measuring 300 mm×1200 mm-are reinforced with steel bars, while the other four are axially strengthened using glass-FRP bars (referred to as GSG columns). The broken columns are repaired and strengthened using carbon-FRP sheets after the specimens have been subjected to concentric and eccentric compression until a 30% loss in axial strength is attained in the post-peak phase. The study investigates the effects of various variables on important response metrics like axial strength, axial deflection, load-deflection response, stiffness index, strength index, ductility index, and damage response. These variables include concentric and eccentric compression, helix pitch, steel bars, carbon-FRP wrapping, and glass-FRP bars. Both before and after the quick repair process, these metrics are evaluated. The results of the investigation show that the axial strengths of the reconstructed SSG and GSG columns are, respectively, 15.3% and 20.9% higher than those of their original counterparts. In addition, compared to their SSG counterparts, the repaired GSG samples exhibit an improvement in average ductility indices of 2.92% and a drop in average stiffness indices of 3.2%.

On vibration and flutter of shear and normal deformable functionally graded reinforced composite plates

  • Abdollahi, Mahdieh;Saidi, Ali Reza;Bahaadini, Reza
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.437-452
    • /
    • 2022
  • For the first time, the higher-order shear and normal deformable plate theory (HOSNDPT) is used for the vibration and flutter analyses of the multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) plates under supersonic airflow. For modeling the supersonic airflow, the linear piston theory is adopted. In HOSNDPT, Legendre polynomials are used to approximate the components of the displacement field in the thickness direction. So, all stress and strain components are encountered. Either uniform or three kinds of non-uniform distribution of graphene platelets (GPLs) into polymer matrix are considered. The Young modulus of the FG-GPLRC plate is estimated by the modified Halpin-Tsai model, while the Poisson ratio and mass density are determined by the rule of mixtures. The Hamilton's principle is used to obtain the governing equations of motion and the associated boundary conditions of the plate. For solving the plate's equations of motion, the Galerkin approach is applied. A comparison for the natural frequencies obtained based on the present investigation and those of three-dimensional elasticity theory shows a very good agreement. The flutter boundaries for FG-GPLRC plates based on HOSNDPT are described and the effects of GPL distribution patterns, the geometrical parameters and the weight fraction of GPLs on the flutter frequencies and flutter aerodynamic pressure of the plate are studied in detail. The obtained results show that by increasing 0.5% of GPLs into polymer matrix, the flutter aerodynamic pressure increases approximately 117%, 145%, 166% and 196% for FG-O, FG-A, UD and FG-X distribution patterns, respectively.

Nano-Structures on Polymers Evolved by Ion Beam/Plasma

  • Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.76-76
    • /
    • 2012
  • Surface engineering of polymers has a broad array of scientific and technological applications that range from tissue engineering, regenerative medicine, microfluidics and novel lab on chip devices to building mechanical memories, stretchable electronics, and devising tunable surface adhesion for robotics. Recent advancements in the field of nanotechnology have provided robust techniques for controlled surface modification of polymers and creation of structural features on the polymeric surface at submicron scale. We have recently demonstrated techniques for controlled surfaces of soft and relatively hard polymers using ion beam irradiation and plasma treatment, which allows the fabrication of nanoscale surface features such as wrinkles, ripples, holes, and hairs with respect to its polymers. In this talk, we discuss the underlying mechanisms of formation of these structural features. This includes the change in the chemical composition of the surface layer of the polymers due to ion beam irradiation or plasma treatment and the instability and mechanics of the skin-substrate system. Using ion beam or plasma irradiation on polymers, we introduce a simple method for fabrication of one-dimensional, two-dimensional and nested hierarchical structural patterns on polymeric surfaces on various polymers such as polypropylene (PP), polyethylene (PE), poly (methyl methacrylate) PMMA, and polydimethylsiloxane (PDMS).

  • PDF

A new 3D interface element for three dimensional finite element analysis of FRP strengthened RC beams

  • Kohnehpooshi, O.;Noorzaei, J.;Jaafar, M.S.;Saifulnaz, M.R.R.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.257-271
    • /
    • 2011
  • The analysis of interfacial stresses in structural component has been the subject of several investigations but it still requires more effort and studies. In this study a general three-dimensional interface element has been formulated for stress and displacement analyses in the interfacial area between two adjacent plate bending element and brick element. Interface element has 16 nodes with 5 degrees of freedom (DOF) in each node adjacent to plate bending element and 3 DOF in each node adjacent to brick element. The interface element has ability to transfer three translations from each side of interface element and two rotations in the side adjacent to the plate element. Stiffness matrix of this element was formulated and implemented in three-dimensional finite element code. Application of this element to the reinforced concrete (RC) beam strengthened with fiber reinforced polymer (FRP) including variation of deflection, slip between plate and concrete, normal and shear stresses distributions in FRP plates have been verified using experimental and numerical work of strengthened RC beams carried out by some researchers. The results show that this interface element is effective and can be used for structural component with these types of interface elements.

Seismic performance of RC bridge piers subjected to moderate earthquakes

  • Chung, Young Soo;Park, Chang Kyu;Lee, Dae Hyoung
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.429-446
    • /
    • 2006
  • Experimental investigation was conducted to evaluate the seismic ductility of earthquake-experienced concrete columns with an aspect ratio of 2.5. Eight circular concrete columns with a diameter of 600 mm were constructed with three test parameters: confinement ratio, lap-splice of longitudinal bars, and retrofitting with Fiber Reinforced Polymer (FRP) materials. The objective of this research is to examine the seismic performance of RC bridge piers subjected to a Quasi static test (QST), which were preliminary tested under a series of artificial earthquake motions referred to as a Pseudo dynamic test (PDT). The seismic enhancement effect of FRP wrap was also investigated on these RC bridge piers. Six specimens were loaded to induce probable damage by four series of artificial earthquakes, which were developed to be compatible with earthquakes in the Korean peninsula by the Korea Highway Corporation (KHC). Directly after the PDT, six earthquake-experienced columns were subjected to inelastic cyclic loading under a constant axial load of $0.1{f_c}^{\prime}A_g$. Two other reference specimens without the PDT were also subjected to similar quasi-static loads. Test results showed that specimens pre-damaged by moderate artificial earthquakes generally demonstrated good residual seismic performance, which was similar to the corresponding reference specimen. Moreover, RC bridge specimens retrofitted with wrapping fiber composites in the potential plastic hinge region exhibited enhanced flexural ductility.