• Title/Summary/Keyword: polymer light-emitting diode

Search Result 87, Processing Time 0.045 seconds

Systematic Approaches for Blue Light-emitting Polymers by Introducing Various Naphthalene Linkages into Carbazole Containing PPV Derivatives

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.258-262
    • /
    • 2013
  • Poly(2,3-naphthalenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), 2,3-PNCPV, poly(2,6-naphthalene vinylenealt- N-ethylhexyl-3,6-carbazolevinylene), 2,6-PNCPV, and poly(1,4-naphthalenevinylene-alt-N-ethylhexyl-3,6- carbazolevinylene), 1,4-PNCPV were synthesized through the Wittig polycondensation reaction. The conjugation lengths of the polymers were controlled by differently linked naphthalenes in the polymer main chain. The resulting polymers were completely soluble in common organic solvents, and exhibited good thermal stability at up to $400^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 357-374 nm and 487-538 nm, respectively. The carbazole and 2,3-linked naphthalene containing 2,3-PNCPV showed a blue PL peak at 487 nm. A single-layer light-emitting diode was fabricated with an ITO/polymer/Al configuration. The electroluminescence (EL) emission of 2,3-PNCPV was shown at 483 nm.

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

Antireflective Film Design to Improve the Optical Efficiency of Organic Light-emitting Diode Displays (유기발광다이오드 디스플레이의 광효율 향상을 위한 반사방지필름 설계)

  • Kim, Kiman;Lim, Young Jin;Doan, Le Van;Lee, Gi-Dong;Lee, Seung Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.262-267
    • /
    • 2018
  • In this paper, we designed a new antireflective film to improve the optical efficiency of organic light-emitting diode displays (OLEDs). The reflection characteristics in the normal and side viewing directions of OLEDs with the antireflective film were calculated, depending on the degree of polarization and transmittance of the currently used polarizer when used in the antireflective film of an OLED. The results showed that when the polarization degree of the commercial polarizer (99.990~99.995%) is lowered to 99.900%, the average reflectance of the antireflective film is increased by about 0.1% (2.5% in terms of rate of increase) which is difficult to notice with the human eye, while the transmittance is increased by 1.63~3.34% (4.2~8.2% in terms of rate of increase). This study provides an optimal design for high-light-efficiency OLEDs with good antireflection properties.

Design and Implementation of Polymer-Light Emitting Diodes by using Nanocantact Printing (나노접촉 인쇄공정을 이용한 폴리머 유기정보표시소자 설계 및 구현)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1511-1513
    • /
    • 2005
  • The polymer-light emtting diodes(PLEDs) were comprised a design of OLED array, process develop by using ITO thin glass, and fabrication of PDMS stamp by using nanocontact printing. In the study, we describe a different approach for building OLEDs, which is based on physical lamination of thin metal electrodes supported by a PDMS stamp layer against an electroluminescent organic. We develop that devices fabricated in this manner have better performance than those constructed with standard processing techniques. The lamination approach avoids forms of disruption that can be introduced at the electrode organic interface by metal evaporation and has a reduced sensitivity to pinhole or partial pinhole defects. Also, it is easy to build patterned PLED with feature sizes into the nanometer regime. This method provides a new route to PLED for applications ranging from high performance displays to storage and lithography systems, and PLED can used for organic electronics and flexible display.

  • PDF

Polymer Light-Emitting Diode with Controlled Nano-Structure

  • Park, O-Ok;Lim, Yong-Taik;Park, Jong-Hyeok;Lee, Ho-Chul;Kim, Tae-Ho;Lee, Hang-Ken
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.194-194
    • /
    • 2006
  • Polymer light-emitting diodes(PLEDs) have great potential application in large area flat panel displays and general lighting so intense academic and industrial research, and impressive scientific and technological progress has been achieved in this field. However, the efficiency and stability of PLEDs till need to be improved in order to fully realize the advantages of low cost and ease of fabrication provided by organic materials. Here, we report our effort to enhance the PLED' s performance in two approaches : 1) Utilizing nano-structured materials such as nano particles, clay, nano porous silica in active layer 2) Modifying the device structure in nano scale to improve not only the device efficiency but also its stability.

  • PDF

The Electrical and Optical Properties of Polymer Light Emitting Diode with ITO/PEDOT:PSS/MEH-PPV/Al Structure at Various Concentration of MEH-PPV (ITO/PEDOT:PSS/MEH-PPV/Al 구조에서 MEH-PPV 농도에 따른 유기발광다이오드의 전기$\cdot$광학적 특성)

  • Gong Su Cheol;Back In Jea;Yoo Jae Hyouk;Lim Hun Seung;Chang Ho Jung;Chang Gee Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.155-159
    • /
    • 2005
  • In this report, Polymer light emitting diodes (PLEDs) with an ITO/PEDOT:PSS/MEH-PPV/Al structure were prepared by spin coating method on the glass substrate patterned ITO (indium tin oxide), using PEDOT:PSS(poly(3,4=ethylenedioxythiophene):poly(styrene sulfolnate)) as the hole transfer material and MEH-PPV(poly(2-methoxy-5-(2-ethyhexoxy)-1,4-phenylenvinylene)) having a different concentration (0.1, 0.3, 0.5, 0.7, 0.9, 1.5 wt$\%$) as the emitting material. The electrical and optical properties of the prepared PLED samples were investigated. The good electrical and optical properties were observed for the PLED samples with a MEH-PPV concentration ranging from 0.5 to $0.9 wt\%$. However, the current and luminance values for PLED sample with $1.5 wt\%$ of MEH-PPV decreased greatly. The maximum luminance and light efficiency for the PLEDs with concentration of $0.5 wt\%$ MEH-PPV were $409 cd/m^2$ and 4.90 Im/W at 9 V, respectively. The emission spectrums were found to be $560{\~}585 nm$ in wavelength showing orange color.

  • PDF

Fabrication and Characterization of Polymer Light Emitting Diodes by Using PFO/PFO:MEH-PPV Double Emitting Layer (PFO/PFO:MEH-PPV 이중 발광층을 이용한 고분자 유기발광다이오드의 제작과 특성 연구)

  • Chang, Young-Chul;Shin, Sang-Baie
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • To improve the external quantum efficiency by means of the optimization of the polymer light emitting diodes(PLEDs) structure, the PLED with ITO/PEDOT:PSS/(PFO)/PFO:MEH-PPV/LiF/Al structure were fabricated and investigated the electrical and optical properties for the prepared devices. ITO(indium tin oxide) and PEDOT:PSS [poly (3,4-ethylenedioxythiophene): poly(styrene sulfolnate)] were used as transparent anode film and hole transport materials, respectively. PFO[poly(9,9-dioctylfluorene)] and MEHPPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and dopant materials. The doping concentration of MEH-PPV was 9wt% with thickness of about $400{\AA}$. We investigated the dependence of the PFO thickness ranging from $200{\AA}$ to $300{\AA}$ on the electrical, optical properties of PLEDs. Among prepared PLED devices with different PFO thicknesses, the highest value of the luminance was obtained for the PLED device with $250{\AA}$ in thickness. As a result, the current density and luminance ware found to be about $400mA/cm^2$ and $1500cd/m^2$ at 13V, respectively. In addition, the luminance and current efficiency of PLED device with double emitting layer (PFO/PFO:MEH-PPV) were improved about 3 times compared with the one with single emitting layer (PFO:MEH-PPV).

  • PDF

The Photovoltaic LED Lighting System applying Lithium Polymer Batteries (리튬 폴리머 전지를 이용한 태양광 LED 조명시스템)

  • Ahn, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • The research on solar energy that we get from nature to cope with energy exhaustion is a very significant and inevitable task for us to do. Along with this, lately, in Korea, as part of new growth engine industry regarding low-carbon green growth, we have selected the LED(Light Emitting Diode) as low power consuming, eco-friendly lighting equipment and have been facilitating research and development on it and creating a variety of new industries utilizing it. What was developed here in this research was the photovoltaic LED lighting system applying lithium polymer batteries equipped with the excellent performance of lithium ion batteries as well as significantly low explosive hazard. Its photovoltaic panel was made to have 100W capacity, and for its power supply system, functional convenience was considered so that it could be equipped with both DC and AC power to be used as household electricity in a variety of ways.

Hybrid polymer-quantum dot based single active layer structured multi-functional device (Organic Bistable Device, LED and Photovoltaic Cell)

  • Son, Dong-Ick;Kwon, Byoung-Wook;Park, Dong-Hee;Kim, Tae-Whan;Choi, Won-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.97-97
    • /
    • 2010
  • We demonstrate the hybrid polymer-quantum dot based multi-functional device (Organic bistable devices, Light-emitting diode, and Photovoltaic cell) with a single active-layer structure consisting of CdSe/ZnS semiconductor quantum-dots (QDs) dispersed in a poly N-vinylcarbazole (PVK) and 1,3,5-tirs- (N-phenylbenzimidazol-2-yl) benzene (TPBi) fabricated on indium-tin-oxide (ITO)/glass substrate by using a simple spin coating technique. The multi-functionality of the device as Organic bistable device (OBD), Light Emitting Diode (LED), and Photovoltaic cell can be successfully achieved by adding an electron transport layer (ETL) TPBi to OBD for attaining the functions of LED and Photovoltaic cell in which the lowest unoccupied molecular orbital (LUMO) level of TPBi is positioned at the energy level between the conduction band of CdSe/ZnS and LiF/Al electrode (band-gap engineering). Through transmission electron microscopy (TEM) study, the active layer of the device has a p-i-n structure of a consolidated core-shell structure in which semiconductor QDs are uniformly and isotropically adsorbed on the surface of a p-type polymer core and the n-type small molecular organic materials surround the semiconductor QDs.

  • PDF

Synthesis and Luminescent Properties of Blue Light Emitting Polymers Containing a 4,4' or 3,3'-Linked Biphenyl Unit

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.317-321
    • /
    • 2012
  • Poly[4,4'(3,3')-biphenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene], 4,4'(3,3')-PBPMEH-PPV, and poly[4,4'(3,3')-biphenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene], 4,4'(3,3')-PBPCAR-PPV, of varying effective conjugation lengths, were synthesized by the well-known Wittig condensation polymerization between the appropriate biphenyl diphosphonium salts and dialdehyde monomers such as carbazole or dialkoxyphenyl dialdehyde. The conjugation lengths of the polymers were controlled by biphenyl linkages (4,4' or 3,3'). The resulting polymers were highly soluble in common organic solvents and exhibited good thermal stability up to $300^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 314-400 nm and 430-507 nm, respectively. Carbazole and 3,3'-biphenyl containing 3,3'-PBPCAR-PPV showed a blue PL peak at 430 nm. A single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescence (EL) emission of 3,3'-PBPCAR-PPV was shown at 455 nm.