• Title/Summary/Keyword: polymer emulsion

Search Result 319, Processing Time 0.021 seconds

Performance Evaluation of High-RAP Asphalt Mixtures using Rapid-Setting Polymer-Modified Asphalt Emulsion (긴급보수용 개질 유화아스팔트 고비율 순환골재를 사용한 상온 아스팔트 혼합물의 성능 평가)

  • Kwon, Bong Ju;Heo, Jae Min;Han, Yong Jin;Rhee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.21-30
    • /
    • 2015
  • PURPOSES : The purpose of this study was to evaluate the performance of rapid-setting polymer-modified asphalt mixtures with a high reclaimed asphalt pavement (RAP) content. METHODS: A literature review revealed that emulsified asphalt is actively used for cold-recycled pavement. First, two types of rapid-setting polymer-modified asphalt emulsion were prepared for application to high-RAP material with no virgin material content. The quick-setting polymer-modified asphalt mixtures using two types of rapid-setting polymer-modified asphalt emulsion were subjected to the following tests: 1) Marshall stability test, 2) water immersion stability test and 3) indirect tensile strength ratio test. RESULTS AND CONCLUSIONS : Additional re-calibration of the RAP was needed for laboratory verification because the results of analyzing RAP aggregates, which were collected from different job sites, did not deviate from the normal range. The Marshall stability of each type of binder under dry conditions was good. However, the Type B mixtures with bio-additives performed better in the water immersion stability test. Moreover, the overall results of the indirect tensile strength test of RAP mixtures with Type B emulsions exceeded 0.7. Further research, consisting of lab testing and on-site application, will be performed to verify the possibility of using RAP for minimizing the closing of roadways.

Effect of Physical Characteristics of Emulsion Asphalt and Aggregate on Performance of Chip Seal Pavements (유화아스팔트 바인더와 골재 특성이 칩씰 포장의 공용성에 미치는 영향 연구)

  • Hong, Ki Yun;Kim, Tae Woo;Lee, Hyun Jong;Park, Hee Mun;Ham, Sang Min
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the effect of physical characteristics of emulsion asphalt and aggregate on performance of chip seal pavements. METHODS : In order to evaluate the performance of chip seal materials, the sweep tests and Vialit Plate Shock tests were conducted on the mixtures with five emulsion asphalt binders and three aggregate types. The sweep tests was intended to investigate the change of bonding properties between emulsion asphalt and aggregate with curing time. The Vialit Plate Shock test was used to evaluate the bonding properties of chip seal materials at low temperatures. RESULTS : Results from sweep tests showed that polymer modified emulsion asphalt can reduce the curing time by 1.5 hour comparing with typical emulsion asphalt. It is also found that the Flakiness Index of aggregates and absorption rate of binder are the major factors affecting the bonding properties of chip seal materials. The Vialit Plate Shock test results showed that the average aggregate loss of CRS-2 is ten times higher than CRS-2P No.2 indicating that the use of polymer additives in emulsion asphalt can improve the performance of chip seal materials in low temperature region. CONCLUSIONS : The use of polymer in emulsion asphalt can decrease the curing time of chip seal materials and increase the bonding properties between aggregates and asphalt binder. It is also concluded that the lower Flakiness Index and absorption rate of aggregates can improve the performance of chip seal pavement.

Retention and Drainage Characteristics with Inverse Emulsion Type C-PAM

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.24-30
    • /
    • 2006
  • This study was performed to characterize inverse emulsion type cationic polyacrylamide (PAM) and to compare with powder and salt dispersion type PAMs as a retention and drainage aid. Salt dispersion type PAM has defects of high amount of salt which increases conductivity of white water, low active polymer contents and relatively worse retention and drainage properties than others because of its low molecular weight. Powder type PAM has benefit of high active polymer contents and good retention and drainage properties, but defects of low dissolution speed and insoluble particle generation were observed. However, inverse emulsion type showed the best retention and drainage aids among them by controlling molecular weight and morphology easily and it had relatively higher active polymer contents and better solubility.

Effect of Polymers to Nano-emulsion Stability (나노에멀젼 안정성에 대한 폴리머의 영향)

  • Cho, Wan-Goo;Kim, Eun-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.339-347
    • /
    • 2013
  • Nano-emulsions are submicron sized emulsions that are under extensive investigation as drug carriers for improving the delivery of therapeutic agents. The aim of this research is to investigate the stability of nano-emulsions containing polymers. Nano-emulsions containing high concentrations of Carbopol 941, Aristoflex AVC, Aronbis M, Permulen TR 2 and Aculyn 44 were unstable compared with macroemulsions with polymers. The size of emulsion droplet manufactured by adding polymer before emulsification were larger than that of emulsion manufactured by adding polymer after the emulsification. The stability of nano-emulsion containing a low concentration of polymer was also decreased, however the effect was lower than that in the high concentration of polymer. Under similar viscosity of polymer, the sequence of unstability was Aristoflex AVC < Carbopol 941 < Permulen TR2 < Carbopol 941 + Aculyn 44 < Aronbis M.

Properties of Waterborne Polyurethane/Nanosilica Composite

  • Kim, Byung-Kyu;Seo, Jang-Won;Jeong, Han-Mo
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.198-201
    • /
    • 2003
  • Aqueous emulsion of polyurethane (PU) ionomers were reinforced with hydrophobic nanosilica to give composites. The aqueous emulsion was stable and the particle size increased as the content of hydrophobic nanosilica was increased. The reinforcing effect of nanosilica in mechanical properties of these composites were examined by dynamic mechanical and tensile tests, and the Shore A hardness was measured. Enhanced thermal and water resistance and marginal reduction in transparency of these composites were observed compared with pristine polymer. These results were similar with those of our previous studies on waterborne PU/organoclay nanocomposites.

Emulsion Blends of Polyurethane Ionomers from Ester and Ether Type Polyols (Ester 및 Ether형 Polyurethane Ionomer의 Emulsion 블랜드)

  • Kim, Sang-June;Kim, Byung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.614-619
    • /
    • 1992
  • Two types of polyurethane(PU) ionomer dispersion having different type of soft segment, viz. Poly (tetramethylene adipate) glycol(PTAd), and polypropylene glycol(PPG) were emulsion blended. Viscosity of emulsion blend, mechanical, and surface properties of the emulsion cast films were determined as a function of blend composition. Mechanical properties showed a large scatter of data or negative deviation from the additivity rule, and this was attributed to the incompatibility of soft segments. Contact angle measurement indicated that air facing surface of emulsion cast film contained more of PPG PU, due probably to its smaller particle diameter compared to PTAd PU.

  • PDF

Effect of Surfactant Type on the Particle Size and Yield in Semi-Continuous Emulsion Polymerization of n-Butyl Acrylate/Methyl Metacrylate (반연속식 노말브틸-아크릴레이트/메틸메타-아크릴레이트 유화중합(1) : 폴리머 라텍스의 수율과 입자크기에 관한 계면활성제 종류의 영향)

  • Ko, Ki-Young;Kim, Sung-il;Kim, Chul-Ung;Hyung, Gi-Woo
    • Clean Technology
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • In these studies, semibatch emulsion copolymerization of n-butyl acrylate (n-BA) as adhesive component and methyl metacrylate (MMA) as coagulant component was carried out in order to investigate the role of surfactant in aqueous phase for polymer cement. It was found that the particle size and concentration of final polymer are affected by surfactant type used. The effect of nonionic surfactants was shown in the decrease of polymer emulsion concentration and small emulsion particle in order of LE-50, NP-50 > CE-50, Tween 20 > TX-405 > Brij 35. In LE and NP (n=7-50) as nonionic surfactant, it could be obtained the stable polymer emulsion of 40% in aqueous phase with average particle size of 250-320 nm using over n=30. On the other hand, the effect of surfactant type in initial reactor charge was shown that when SDS as ionic surfactant was used, the polymer emulsion concentration was constant irrespective of the amount used, whereas CTAB as cationic surfactant and HN-100 as reactive surfactant were shown a tendency to the decrease of that. The effect surfactant type on final polymer particle size was shown in decrease by the order of SDS > CTAB > HN-100.

  • PDF

Preparation of Colored Electrophoretic Nanoparticles by Emusifier-Free Emulsion Polymerization and Reactive Dyeing (무유화 에멀젼 공중합법과 반응염법을 이용한 전기영동 고분자 컬러나노입자의 제조)

  • Chon, Jin-A;Ha, Jae-Hee;Lim, Min-Ho;Kwon, Yong-Ku
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.491-494
    • /
    • 2010
  • Colored, electrophoretic polymer nanoparticles of poly (styrene-co-divinylbenzene-co-vinyl acetate)[poly(St-co-DVB-co-VAc)] were prepared by emulsifier-free emulsion co-polymerization and reactive dyeing. The emulsifier-free emulsion polymerization of styrene, divinyl benzene and vinyl acetate was carried out at $70^{\circ}C$ for 20 hrs to obtain monodisperse polymer nanoparticles of poly(St-co-DVB-co-VAc) with an average diameter of 180~200 nm. These nanoparticles were transformed into poly(styrene-co-divinylbenzene-co-vinyl alcohol) [poly(St-co-DVB-co-VA)] nanoparticles through the saponification reaction. The poly(St-co-DVB-co-VA) nanoparticles were treated with reactive dyes to obtain the colored, monodisperse electrophoretic nanoparticles, and their morphology and surface charge were characterized by scanning electron microscopy, differential scanning calorimetry, UV/Vis absorbance and zeta-potentiometry.

The Chemical Resistance of Polymer Cement Slurry Coated Reinforcing Bars (폴리머 시멘트 슬러리 도장철근의 내약품성)

  • 김현기;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1121-1126
    • /
    • 2000
  • The purpose of this study is to clarify chemical resistance of polymer-cement slurry coated reinforcing bars. Polymer cement slurry coated reinforcing bars were showed the good state to the bending resistance, impact resistance, adhesive strength, but exact data of the chemical resistance do not exist. Through the experimental, it is to certify chemical resistance of polymer cement slurry coated reinforcing bars. In this study, polymer cement slurry coated reinforcing bars are prepared with two types of polymer, polymer-cement ratios of 50%, 100%, 150%, coating thickness, curing periods of 3, 7, 28days, and tested for chemical resistance as KS(Korea Standard). From the test results, chemical resistance of polymer cement slurry coated reinforcing bars used by acrylic and St/BA emulsion were showed excellent without concerned polymer-cement ratios, curing period except for 1% aqueous solution $H_2SO_4$. But polymer cement coated reinforcing bar used by acrylic emulsion is inferior to aqueous solution NaOH.

Water Resistance and Thermal Properties of Resin Based on Silane-modified Vinyl Acetate-Acrylic Emulsion Copolymers (실리콘 수식 비닐아세테이트-아크릴 공중합체 수지의 방수성 및 열적 성질)

  • Naghash, Hamid Javaherian
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • Triphenylvinylsilane (TPVS) containing vinyl acetate (VAc), butyl acrylate (BA), and Nmethylolacrylamide (NMA) copolymers were prepared by emulsion polymerization. The polymerization was performed at $80^{\circ}C$ in the presence of auxiliary agents and ammonium peroxodisulfate (APS) as the initiator. Sodium dodecyl sulphate (SDS) and Arkupal N-300 were used as anionic and nonionic emulsifiers, respectively. The resulting copolymers were characterized by using Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and dynamic light scattering (DLS). Thermal properties of the copolymers were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology of copolymers was also investigated by scanning electron microscopy (SEM) and then the effects of silicone concentrations on the properties of the TPVS-containing VAc-acrylic emulsion copolymers were discussed. The obtained copolymers have high solid content (50%) and can be used in weather resistant emulsion paints as a binder.