• Title/Summary/Keyword: polymer electrolyte fuel cell

Search Result 535, Processing Time 0.023 seconds

Preparation of Self-humidifying Pt/Nafion Membranes using Supercritical $CO_2$ for PEMFCs (초임계유체를 이용한 PEMFC용 자가 가습 백금/나피온 막의 제조)

  • Byun, Jung-Yeon;Kim, Hyo-Won;Sung, Joon-Yong;Kim, Hwa-Yong
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.99-103
    • /
    • 2007
  • Pt/Nafion self-humidifying membranes for Polymer Electrolyte Membrane Fuel Cell (PEMFC) were synthesized via a supercritical-impregnation method. The Nafion 112 membranes were impregnated with Pt(II) acetylacetonate from a supercritical carbon dioxide ($scCO_2$) solution at $80^{\circ}C$ and 19.8 MPa. After the impregnation, the Pt-impregnated Nafion membrane was converted Pt deposited Nafion(Pt/Nafion) membrane by reducing agent, sodium borohydride ($NaBH_4$) under $50^{\circ}C$ and 2 hours. The prepared Pt/Nafion membranes were investigated by SEM, EDS and EPMA. The performance of the Pt/Nafion membranes was examined in PEMFC as a self-humidifying membrane. The cell performance of the Pt/Nafion membrane at $65^{\circ}C$ is better than that of Nafion 112.

  • PDF

Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding (Fenton 반응과 OCV Holding에 의한 PEMFC 고분자 전해질 막의 열화비교)

  • Oh, Sohyung;Kwag, Ahhyun;Lee, Daewoong;Lee, Mooseok;Lee, Donghoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.768-773
    • /
    • 2019
  • The Fenton reaction, which evaluates the electrochemical durability of polymer membranes of polymer electrolyte fuel cells (PEMFC), and the degradation of polymer membranes by OCV holding method are compared. The Fenton reaction is a method that can evaluate the chemical durability of the polymer membrane at outside the cell in a shorter time than the OCV Holding method. The Fenton reaction was carried out at 30% hydrogen peroxide, 10 ppm iron, and $80^{\circ}C$ for 24 hours. OCV Holding was driven at $90^{\circ}C$, 30% relative humidity and OCV for 168 hours. The Fenton reaction caused a lot of degradation inside the polymer membrane. On the other hand, in OCV Holding, the membrane thickness was thinned by the entire surface and internal degradation. The fluorine emission rate was more than 10 times higher than that of OCV Holding due to the Fenton reaction. The hydrogen permeation rate increased about 30% at 24 hours of Fenton reaction. At OCV Holding, hydrogen permeability decreased after 24 hours and then increased. As a whole, there was a difference in a membranes deteriorated by Fenton reaction and OCV Holding.

Effect of Au content on the electro-catalytic activity of Pt catalyst for Pt-Au/C composite catalyst (Pt-Au/C 복합촉매에 있어서 Au 혼합비가 Pt 촉매의 활성에 미치는 영향)

  • Jo, Jin-Nyeong;Song, Jae-Chang;Song, Mink-Young;Song, Hyun-Min;Lee, Hong-Ki;Yu, Yeon-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.143.1-143.1
    • /
    • 2010
  • 고분자 전해질막 연료전지(Polymer Electrolyte Membrane Fuel Cell; PEMFC)는 수소를 이용하여 전기를 발생시키는 친환경적이고 이상적인 발전장치로 고효율과 높은 전류밀도를 가지며 그 응용분야가 다양하다. 저온에서 작동하는 PEM fuel cell은 전극에서 효과적인 산화환원반응을 위해 그 촉매로 활성이 우수한 Pt(Platinum)을 사용하고 있으나, Pt의 높은 가격은 연료전지의 상용화에 걸림돌이 되고 있다. 본 연구에서는 연료전지의 Pt/C 촉매 층에서 Pt의 분산성을 높여 Pt의 담지량을 줄이고 작동 중 발생하는 Pt의 응집 현상을 방지하여 Pt의 수명을 연장시킬 목적으로, Au(gold) 나노입자를 첨가한 Pt-Au/C 복합나노촉매를 제조하였다. 본 발표에서는 합성된 Pt-Au/C 복합촉매 중 Au 첨가량이 Pt 촉매의 활성에 미치는 영향을 조사하기 위하여, 복합촉매 중에 금속(Pt+Au)의 총 함량이 30 wt.%와 40 wt.% 인 Pt-Au/C 촉매에 대하여 각각 Au 첨가량을 변화시켜, cyclic voltammetry 법에 의해 Au 첨가 효과를 조사한 결과에 대하여 보고하고자 한다. Au 나노입자를 제조하기 위한 출발 물질로는 $HAuCl_4{\cdot}4H_2O$를 이용하였고 trisodium citrate와 $NaBH_4$를 환원제로 하여, 입경이 5~8 nm 인 Au 콜로이드를 제조하였다. Pt-Au/C 복합나노촉매를 제조하기 위하여 먼저 Au/C 복합분체가 제조되었다. 0.03g의 carbon이 첨가된 carbon 현탁액에 합성된 Au 콜로이드 수용액을 첨가한 후 24시간 동안 교반하여 Au/C 복합분체를 제조하였다. 이 Au/C 복합분체에 $H_2PtCl_6{\cdot}6H_2O$ 수용액을 현탁하고 methanol 을 환원제로 사용해 Pt를 환원 석출시켜 Pt-Au/C 복합촉매를 제조하였다. Pt-Au/C 복합 나노촉매에서 Pt와 Au를 다양한 비율(3:1, 2.5:1.5, 2:2)로 합성하였으며 Pt-Au/C 복합촉매 중 금속(Pt+Au) 촉매의 총 함량은 30 wt.%와 40 wt.%로 각각 제조되었다. Au 나노입자 콜로이드의 분산성은 UV-visible spectrum의 흡광도에 의해 관찰되었고, Pt-Au/C 복합 나노촉매의 형상 및 분산성 분석은 transmission electron microscopy(TEM)에 의해 이루어졌다. 또한, 촉매의 전기화학적 특성평가는 cyclic voltammetry(CV)에 의해 조사되었다.

  • PDF

Preparation of CuO-CeO2 mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO (졸-겔법에 의한 CuO-CeO2 복합 산화물 촉매의 제조 및 CO의 선택적 산화반응에 응용)

  • Hwang, Jae-Young;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.883-891
    • /
    • 2017
  • For the preferential oxidation of CO contained in the fuel of polymer electrolyte membrane fuel cell (PEMFC), CuO-$CeO_2$ mixed oxide catalysts were prepared by the sol-gel and co-precipitation methods to replace noble metal catalysts. In the catalyst preparation by the sol-gel method, Cu/Ce ratio and hydrolysis ratio were changed. The catalytic activity of the prepared catalysts was compared with the catalytic activity of the noble metal catalyst($Pt/{\gamma}-Al_2O_3$). Among the catalysts prepared with different Cu/Ce ratios, the catalyst whose Cu/Ce ratio was 4:16 showed the highest CO conversion (90%) and selectivity (60%) at $150^{\circ}C$. As the hydrolysis ratio was increased in the catalyst preparation, surface area increased, and catalytic activity also increased. The highest CO conversions with the CuO-$CeO_2$ mixed oxide catalyst prepared by the co-precipitation method and the noble metal catalyst (1wt% $Pt/{\gamma}-Al_2O_3$) were 82 and 81% at $150^{\circ}C$, respectively, whereas the highest CO conversion with the CuO-$CeO_2$ mixed oxide catalyst prepared by the sol-gel method was 90% at the same temperature. This indicates that the catalyst prepared by the sol-gel method shows higher catalytic activity than the catalysts prepared by the co-precipitation method and the noble metal catalyst. From the CO-TPD experiment, it was found that the catalyst having CO desorption peak at a lower temperature ($140^{\circ}C$) revealed higher catalytic activity.

Preparation of Proton Conducting Crosslinked Membranes From PS-b-PHEA Diblock Copolymer and Poly(vinyl alcohol) (PS-b-PHEA 디블록 공중합체와 폴리비닐알콜을 이용한 수소이온 전도성 가교형 전해질막의 제조)

  • Kim, Jong-Hak;Seo, Jin-Ah;Roh, Dong-Kyu;Park, Jung-Tae;Koh, Joo-Hwan;Makea, Sanjeev
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.234-240
    • /
    • 2008
  • This work demonstrates the preparation of proton conducting crosslinked polymer electrolyte membranes by blending polystrene-b-poly(hydroxyethyl acrylate) (PS-b-PHEA) and poly(vinyl alcohol) (PVA) at 1 : 1 wt ratio. The PHEA block of the diblock copolymer was crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of membrane and -COOH of SA, as confirmed by FT-IR spectroscopy. Ion exchange capacity (IEC) continuously increased from 0.14 to 0.91 meq/g with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. In contrast, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.024 S/cm at 20.0 wt% of SA concentration. The maximum behavior of water uptake and proton conductivity is considered to be due to competitive effect between the increase of ionic sites and the crosslinking reaction according to the SA concentration.

Improvement of Oxidative Stability for Non-fluorinated Membranes Prepared by Substituted Styrene Monomers (스티렌 유도체를 이용한 비불소계 고분자 전해질막의 산화적 안정성 개선)

  • Moon, Seung-Hyeon;Woo, Jung-Je;Fu, Rong-Qiang;Seo, Seok-Jun;Yun, Sung-Hyun
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.294-301
    • /
    • 2007
  • To improve oxidative stability of non-fluorinated styrene-based polymer electrolyte membranes, copolymerized membranes were prepared using styrene derivatives such as p-methylstyrene, t-butylstyrene, and ${\alpha}-methylstyrene$ by monomer sorption method. Prepared membrane was characterized by measurement of weight gain ratio, water content, ion-exchange capacity, proton conductivity, and oxidative stability under the accelerated condition. It was found that each step of monomer sorption method including sorption, polymerization and sulfonation could be affected by the properties and the structures of styrenederivatives. Due to difficulty of polymerization, ${\alpha}$-methylstyrene was copolymerized with styrene or p-methylstyrene. Prepared membrane using ${\alpha}-methylstyrene$ and styrene showed higher performance and stability comparing to copolymerized membrane with styrene. However, copolymerized membranes with ${\alpha}-methylstyrene$ did not showed much improved oxidative stability comparing to styrene membrane due to their lower molecular weight. The t-butylstyrene membrane showed a low performance due to substituted bulky-butyl group which prevents sorption and sulfonation reaction. However, copolymerized t-butylstyrene membranes with p-methylstyrene showed good performance and much improved stability than the styrene membranes.

Preparation and Characterization of Proton Conducting Crosslinked Membranes Using Polymer Blends (폴리머 블렌딩을 이용한 수소 전도성 가교형 막의 제조와 그 특성)

  • Kim, Jong-Hak;Lee, Do-Kyoung;Choi, Jin-Kyu;Seo, Jin-Ah;Roh, Dong-Kyu
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.311-317
    • /
    • 2007
  • Proton conducting crosslinked membranes have been prepared by polymer blending, which consist of poly(vinyl alcohol-co-ethylene) (PVA-co-PE) and poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA) at 50 : 50 wt ratio. Two kinds of PSSA-co-PMA copolymer with 3 : 1 and 1 : 1 the molar ratio of PSSA to PMA wereused as a proton conducting source. The ethylene content of PVA-co-PE was also changed as 0, 27 and 44 mol%. The membranes were thermally crosslinked via the esterification reaction between -OH of PVA and -COOH of PMA, as demonstrated by FT-IR spectroscopy (PVA-co-PE)/(PSSA-co-PMA) membranes with 3 : 1 the molar ratio of PSSA to PMA showed higher ion exchange capacity (IEC), lower water uptake and higher proton conductivity than those with 1 : 1 molar ratio. As the PE concentration increased, the IEC values, water uptake and proton conductivities decreased continuously. These properties were elucidated in terms of competitive effect between the concentration of sulfonic acid, hydrophilicity and the crosslinked structure of membranes.

Effect of Voltage Range and Number of Activation Cycles in the Activation Process of a Polymer Electrolyte Fuel Cell (고분자 전해질 연료전지의 활성화과정에서 전압 범위 및 활성화 횟수의 영향)

  • Donggeun Yoo;Sohyeong Oh;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.58-61
    • /
    • 2023
  • The activation process is essential for PEMFC to improve initial performance. The most commonly used activation method is a voltage change (load change) method, which may accompany degradation of the electrode catalyst if excessively performed. In many activation processes, the voltage change range is activated in a wide range from 0.4 V to OCV, and research is needed to reduce the voltage change range in order to prevent electrode catalyst degradation and shorten the activation time. Therefore, in this study, when the activation voltage range was 0.4~0.6 V, 0.4~0.8 V, and 0.4~OCV, we tried to research and develop an effective activation method by analyzing the performance and characteristics of the electrode and polymer membrane. The performance improvement was the lowest in the activation with a wide voltage range from 0.4 V to the highest OCV, and the performance decreased by 10% when activated for 56 cycles. The 0.4~0.6 V activation cycle showed the highest performance improvement up to 20% and the smallest decrease in performance due to overactivation, indicating that it is optimal method.

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

A Study on the Performance Recovery of $H_2S$ Poisoned PEMFC ($H_2S$ 피독 고분자 전해질막 연료전지의 연료극 성능 회복 연구)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • The recovery of a Pt anode in a PEMFC through 30 ppm $H_2S/H_2$ exposure was evaluated by using a cyclic voltametry(CV) scan. First, the PEMFC unit cell performanc loss was measured three times under an anode feeding with 30 ppm $H_2S/H_2$ for 1hr at $0.5A/cm^2$ of current density. The initial cell performance was $1.16A/cm^2$ at 0.6 V without $H_2S$ poisoning. After first poisoning step for 1hr the cell performance was decrease to $0.77A/cm^2$, and the further poisoning steps decreased up 0.57 V. Finally, the recovery of the cell performance of $H_2S$ poisoned PEMFC was achieved up to 90.3% by applying CV scan. Moreover, we also found out that another possible approach for over 80% recovery of the cell performance of $H_2S$ poisoned anode Pt catalyst layer was to just inject fresh hydrogen into the anode feeding stream.