• Title/Summary/Keyword: polymer dispersion

Search Result 614, Processing Time 0.029 seconds

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

수성 고분자 - 탄소나노튜브 복합 분산 용액을 이용한 전계 방출 소자의 제작

  • Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.66.2-66.2
    • /
    • 2011
  • A polymer-based multi-walled carbon nanotube (MWCNT) field emission device was fabricated from a composite dispersion of MWCNTs and waterborne polymethyl methacrylate (PMMA). The waterborne PMMA synthesized through the emulsion polymerization method was added to minimize the reagglomeration of dispersed MWCNTs with surfactants in water, and increase the adhesion between the and the substrate. The field emission properties of the fabricated device were optimized by adjusting the density of the emitter and the adhesion between the MWCNTs and the substrate. These were done by controlling the polymer concentration added to the MWCNT dispersion, as well as the amount of spray coating on the substrate. The results confirm the successful fabrication of a polymer-based MWCNT field emission device with a low field of 1.07 $V/{\mu}m$ and a good electric field enhancement factor of 2445. The device was fabricated by adding 0.8 mg/mL of polymer solution to the MWCNT dispersion and applying 20 cycles of spray coating. Application of this same MWCNT/polymer composite solution to a flexible polymer substrate also resulted in the successful fabrication of an electric field emission device with uniform emission and long time stability.

  • PDF

Effect of Carbon Nanotube Pre-treatment on Dispersion and Electrical Properties of Melt Mixed Multi-Walled Carbon Nanotubes / Poly(methyl methacrylate) Composites

  • Park Won Ki;Kim Jung Uyun;Lee Sang-Soo;Kim Junkyung;Lee Geon-Woong;Park Min
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.206-211
    • /
    • 2005
  • Multi-walled carbon nanotubes (MWNTs) pre-treated by concentrated mixed acid or oxidized at high temperature were melt mixed with poly(methyl methacrylate) (PMMA) using a twin screw extruder. The morphologies and electrical properties of the MWNT/PMMA composites were investigated. The thermally treated MWNTs (t-MWNTs) were well dispersed, whereas the acid treated MWNTs (a-MWNTs) were highly entangled, forming large-sized clusters. The resulting electrical properties of the composites were analyzed in terms of the carbon nanotube (CNT) dispersion. The experimental percolation threshold was estimated to be $3 wt\%$ of t-MWNTs, but no percolation occurred at similar concentrations in the a-MWNT composites, due to the poor dispersion in the matrix.

Effect of Coagulant Type on the Silica Dispersion and Properties of Functionalized RAFT ESBR Silica Wet Masterbatch

  • Kim, Woong;Ryu, Gyeongchan;Hwang, Kiwon;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.167-175
    • /
    • 2020
  • Various studies have been conducted to improve silica dispersion of silica filled tire tread compounds; among them, silica wet masterbatch (WMB) technology is known to be suitable for manufacturing silica filled compounds that have high silica content and high dispersibility. Till now, the WMB study is focused on the natural rubber (NR) or emulsion styrene-butadiene rubber (ESBR) that does not have a silica-affinity functional group, and a study of NR or ESBR having a silica-affinity functional group is still not well known. Unlike the dry masterbatch technology, the WMB technology can solve the problems associated with the high Mooney viscosity when applied to silica-friendly rubber. However, a coagulant suitable for each functional group has not yet been determined. Therefore, in this study, different coagulant applied silica WMB was prepared by applying calcium chloride, sulfuric acid, acetic acid, and propionic acid by using a carboxyl group functionalized reversible addition fragmentation chain transfer ESBR. The evaluation of the WMB compounds revealed that the calcium chloride added WMB compound showed excellent silica dispersion, abrasion resistance, and rolling resistance.

4-Arm Star Shaped and Linear Block Copolymers for Copper Phthalocyanine Dispersion (4-Arm 스타형과 선형 블록 공중합체의 구리 프탈로시아닌 분산 연구)

  • Kim, Byoungjae;Jeong, Jonghwa;Jung, Ji-Hye;Kim, Bong-Soo;Jung, Ki-Suck;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.671-675
    • /
    • 2014
  • Well-defined star shaped and linear block copolymers were synthesized to study the dispersion stability of copper phthalocyanine (CuPc). We synthesized dispersants using (2-dimethylamino) ethyl methacrylate (DMAEMA) and poly(ethylene glycol) methyl ether methacrylate) (PEGMA) by activators generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). pDMAEMA-b-pPEGMA copolymers were characterized by GPC and NMR. Furthermore, we studied the effect of the dispersion stability of copper phthalocyanine by controlling the degree of polymerization of PEGMA as a stabilizing group. The 4-arm star shaped polymeric dispersant showed better dispersion stability of CuPc at $25^{\circ}C$ for 7 days.

Effect of associating polymer on the dispersion stability and rheology of suspensions

  • Otsubo, Yasufumi;Horigome, Misao
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Associating polymers are hydrophilic long-chain molecules to which a small amount of hydrophobic groups (hydrophobes) is incorporated. In aqueous solution, the association interactions result in the formation of three-dimensional network through flowerlike micelles at high concentrations. In colloidal suspensions, the associating polymers act as flocculated by bridging mechanism. The rheological properties of suspensions flocculated by associating polymers end-capped with hydrophobes are studied in relation to the bridging conformation. At low polymer concentrations, the polymer chains effectively form bridges between particles by multichain association. The suspensions are highly flocculated and show typical viscoelastic responses. When the polymer concentration is increased above the absorbance at saturation, the excess polymer chains remaining in the solution phase build up three-dimensional network by associating interactions. Since the presence of particles does not significantly influence the network structures in the medium, the relative viscosity, which gives a measure of the degree of flocculation is decreased with increasing polymer concentration. The bridging conformation and flocculation level vary strongly depending on the polymer concentrations.

pH Solubility Properties and Improved Dissolution of Pranlukast as an Poorly Water-soluble Model Drug Prepared by Spray-drying with Plasdone S-630 (플라스돈 S-630과 함께 분무건조된 모델 난용성 약물로서 프란루카스트의 pH 용해도 특성 및 용출률 개선)

  • Cho, Won-Hyung;Lee, Young-Hyun;Song, Byung-Joo;Yoo, Seok-Cheol;Lim, Dong-Kyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.277-283
    • /
    • 2011
  • Solid dispersion is mainly used for improved dissolution of poorly water-soluble drugs. Solid dispersion of pranlukast was prepared by spray-drying with plasdone S-630. When pH of water was high, pranlukast was highly soluble in the solubility experiment of solid dispersions with varying pH. The particle size of pranlukast particles in solid dispersions was measured to be in nanometers scale based on particle size analysis. Zeta-potential analysis confirmed the negative charge of solid dispersion. SEM was used to observe the surface of solid dispersion, which confirmed spherical morphology, DSC and XRD confirmed the amorphous nature of solid dispersions. The in vitro test was carried out to find improved dissolution rate of pranlukast solid dispersion in simulated juice gastric and a controlled experiment was carried out to compare pranlukast solid dispersions with a conventional drug (Onon$^{(R)}$), These results showed the dissolution properties of pranlukast solid dispersions prepared by spray drying proper for the oral pharmaceutical formulation.

A Study on Mechanical Properties of Carbon Nanofiber/Epoxy Composites with Dispersion Methods (분산 방법에 따른 탄소나노섬유/에폭시 복합재료의 기계적 물성에 관한 연구)

  • Kong Jin-Woo;Chung Sang-Su;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.151-154
    • /
    • 2004
  • Despite of the excellent properties of carbon nanofiber, The properties of carbon nanofiber filled polymer composites were not increased largely. The reason is that it is still difficult to ensure the uniform dispersion of carbon nanofiber in a polymer matrix. In this study, For improvement properties of carbon nanofiber filled epoxy composites, the effect of dispersion was investigated. The compounds were prepared by two methods, solution blending and mechanical mixing. Mixing of solution blending method was used using ultrasonic. Dispersion of carbon nanofiber was observed by optical microscope and scanning electron microscope (SEM). UV adsorption and turbidity measured by UV spectrometer was used for the comparison of dispersion of carbon nanofiber.

  • PDF

A Study on the Abrasion Resistance of Polymer - Modified Mortar According to Curing Conditions (양생조건에 따른 폴리머 시멘트 모르터의 내마모성에 관한 연구)

  • Jo, Young-Kug;So, Seoung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.115-120
    • /
    • 2005
  • In recent years, polymer-modified mortars using polymer dispersions have been widely used as finish and repair materials in the construction industry because of their excellent properties compares to those of ordinary cement mortar. Especially, the adhesion improvement of ordinary cement mortar and concrete has attracted a great deal of attention from researchers, and several unique and simply applicable techniques for the adhesion improvement have been developed. The purpose of this study is to evaluate the abrasion resistance of polymer-modified mortar according various curing methods. The polymer-modified mortar are prepared with various polymer-cement ratios, and are subjected to three curing methods such as dry rure, standard cure and freezing and thawing cure after two curing methods, and then tested for abrasion. From the test results, the polymer-modified mortars with various polymer-cement ratios have some superior abrasion resistance compared with plain mortar. The abrasion resistance of polymer-modified mortars increase with an increase in the polymer-cement ratio, and is better under water cure than any other curing methods. It is concluded that the abrasion resistance of cement mortar is markedly improved by modifying of polymer dispersion.

Strength properties of Polymer-modified Sandwich panel core using non-structural lightweight Aggregate (비구조용 경량 골재를 충진재로 활용한 폴리머 개질 샌드위치 패널 심재의 강도 특성)

  • 노정식;도정윤;문경주;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.775-780
    • /
    • 2002
  • Sandwich panel made by foamed styrene and ployuretane has been used generally in the construction area because of the high thermal conductivity and light weight but they occur harmful gases to both bodies and environments in the high temperature over $50^{\circ}C$. So, the purpose of this study is to investigate the physical properties of light-weight panel using the non-structural lightweight aggregate as a part of the substitution of foamed styrene and ployuretane. This paper dealt with the effect of the addition of polymer dispersion such as SBR, St/BA-1 and St/BA-2 having polymer-cement ratio as 5, 10, 15% and the filling ratio of continuous void as 50, 60% on the strength of polymer-modified sandwich panel core. From the results, we could know that the compressive and flexural strength of the sandwich panel core using non-structural lightweight aggregate and polymer dispersion such as SBR, St/BA-1 and St/BA-2 tended to be increased with an increase in the polymer-cement ratio and the filling ratio of continuous void.

  • PDF