• Title/Summary/Keyword: polylactic acid (PLA)

Search Result 86, Processing Time 0.023 seconds

Processing and Flexural Properties of Chopped Jute Fiber Reinforced PLA Sandwich Composites (황마 단섬유 강화 폴리유산 샌드위치 복합재의 제작 및 굽힘 특성)

  • Lee, Gyu Hee;Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.96-102
    • /
    • 2014
  • In this study, we fabricated jute fiber reinforced polylactic acid (PLA) composite in the form of sandwich panel structure which includes core foam of chopped jute fiber reinforced PLA and outer skin layer of continuous glass fiber reinforced PLA. Flexural properties of the composite were assessed for different jute fiber weight fractions. Density of the core foam ranged from 0.31 to 0.67 $g/cm^3$ and void content fraction 0.51 to 0.71. The maximum flexural strength was 92.7 MPa at 12.5 wt.% of jute fiber content, and the maximum flexural modulus was 7.58 GPa at 30.0 wt.%. Cost analysis was also conducted. The cost to enhance the flexural strength of the applied structure was estimated to be $0.010USD/m^3/MPa$ for 12.5 wt.% fiber content.

Interfacial Adhesion of Silk/PLA Biocomposites by Plasma Surface Treatment (플라즈마 표면처리에 의한 Silk/PLA 바이오복합재료의 계면접착)

  • Chu, Bo Young;Kwon, Mi Yeon;Lee, Seung Goo;Cho, Donghwan;Park, Won Ho;Han, Seong Ok
    • Journal of Adhesion and Interface
    • /
    • v.5 no.4
    • /
    • pp.9-16
    • /
    • 2004
  • Silk fibers were subjected to argon and ethylene plasma treatments in order to improve the interfacial adhesion with polylactic acid (PLA). After the plasma surface treatment, the surface morphology and surface adhesion of silk fibers to the PLA resin were largely changed. Various plasma treatment conditions were used in this work: 10, 25, 50, 100 and 150 W of electric power, 1, 3, 5, 7 and 10 minutes of treatment time, and 10 and 50 sccm of a gas flow rate. The interfacial shear strength of plasma-treated Silk/PLA biocomposites was measured by a single fiber micro-droplet debonding test method. The result provided an optimal plasma treatment condition to obtain the improved interfacial adhesion in the Silk/PLA biocomposites.

  • PDF

Biodegradative Activities of Fungal Strains Isolated from Terrestrial Environments in Korea

  • Lee, Seung-Yeol;Ten, Leonid N.;Das, Kallol;You, Young-Hyun;Jung, Hee-Young
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.285-293
    • /
    • 2021
  • Polylactic acid (PLA) and polycaprolactone (PCL) are commercially available bioplastics that are exploited worldwide, and both are biodegradable. The PLA and PCL polymer-degrading activity of 30 fungal strains that were isolated from terrestrial environments were screened based on the formation of a clear zone around fungal colonies on agar plates containing emulsified PLA or PCL. Among them, five strains yielded positive results of biodegradation. Strains Korean Agricultural Culture Collection (KACC) 83034BP and KNUF-20-PPH03 exhibited PCL degradation; two other strains, KACC 83035BP and KNUF-20-PDG05, degraded PLA; and the fifth strain, KACC 83036BP, biodegraded both tested plastics. Based on phylogenetic analyses using various combinations of the sequences of internal transcribed spacer (ITS) regions, RPB2, LSU, CAL, and b-TUB genes, the above-mentioned strains were identified as Apiotrichum porosum, Penicillium samsonianum, Talaromyces pinophilus, Purpureocillium lilacinum, and Fusicolla acetilerea, respectively. Based on our knowledge, this is the first report on (i) plastic biodegraders among Apiotrichum and Fusicolla species, (ii) the capability of T. pinophilus to degrade biodegradable plastics, (iii) the biodegradative activity of P. samsonianum against PCL, and (iv) the accurate identification of P. lilacinum as a PLA biodegrader. Further studies should be conducted to determine how the fungal species can be utilized in Korea.

Drug loaded biodegradable membranes for guided tissue regeneration (약물함유 생체분해성 차폐막의 유도조직재생에 관한 연구)

  • Kim, Dong-Kyun;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.192-209
    • /
    • 1995
  • The purpose of this study was to evaluate drug-loaded biodegradable membranes for guided tissue regeneration(GTR). The membranes were made by coating mesh of polyglycolic acid(PGA) with polylactic acid(PLA) containing 10% flurbiprofen or tetracycline. The thickness of membrane was $150{\pm}30{\mu}m$, and the pore size of surface was about $8{\mu}m$ in diameter. The release of drugs from the membrane was measured in vitro. Cytotoxity test for the membrane was performed by gingival fibroblast cell culture, and the tissue response was observed after implant of membrane into the dorsal skin of the rat for 8 wks. Ability to guided tissue regeneration of membranes were tested by measuring new bone in the calvarial defects(5mm in diameter) of the rat for 5 weeks. The amount of flurbiprofen and tetracycline released from membrane were about 30-60% during 7 days. Minimal cytotoxity was observed in the membrane except 20% drug containing membrane. In histologic finding of rat dorsal skin, many inflammatory cells were observed around e-PTFE, polyglactin 910 and PLAPGA membrane after 1 or 2 weeks. PLA-PGA membrane was perforated by connective tissue after 4 or 6 weeks, and divided as a segment at 8 weeks. In bone regeneration guiding potential test, tetracycline loaded membrane was most effective (p

  • PDF

Manufacture of Continuous Glass Fiber Reinforced Polylactic Acid (PLA) Composite and Its Properties (연속 유리섬유 강화 폴리유산 복합재료의 제조 및 물성)

  • Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.230-234
    • /
    • 2013
  • The continuous glass fiber reinforced poly-lactic acid (PLA) composite was manufactured by direct melt impregnation. The mechanical and thermal properties of continuous glass fiber reinforced PLA composite were observed. Measured properties were compared with the reference values of neat PLA and the injection molded glass fiber/ PLA composite. The continuous glass fiber reinforced PLA composite having a fiber volume fraction of 27.7% shows enhanced tensile strength of 331.1 MPa, flexural strength of 528.6 MPa, and flexural modulus of 24.0 GPa. The enhanced heat deflection temperature (HDT) and the increased cystallinity were also observed. The degree of impregnation as a function of pulling speed was also assessed. The degree of impregnation at the pulling speed of 5 m/min was over 90% in this research.

Physical and electrical properties of PLA-carbon composites

  • Kang Z. Khor;Cheow K. Yeoh;Pei L. Teh;Thangarajan Mathanesh;Wee C. Wong
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.211-220
    • /
    • 2024
  • Polylactic acid or polylactide (PLA) is a biodegradable thermoplastic that can be produced from renewable material to create various components for industrial purposes. In 3D printing technology, PLA is used due to its good mechanical, electrical, printing properties, environmentally friendly and non-toxic properties. However, the physical properties and excellent electrical insulation properties of PLA have limited its application. In this study, with the carbon black (CB) as filler added into PLA, the lattice spacing and morphology were investigated by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The physical properties of PLA-carbon composite were evaluated by using tensile test, shore D hardness test and density and voids measurement. Impedance test was conducted to investigate the electrical properties of PLA-Carbon composites. The results demonstrate that the inclusion of carbon black as filler enhances the physical properties of the PLA-carbon composites, including tensile properties, hardness, and density. The addition of carbon black also leads to improved electrical conductivity of the composites. Better enhancement toward the electrical properties of PLA-carbon composites is observed with 1wt% of carbon black in N774 grade. The N550 grade with 2wt% of carbon black shows better improvement in the physical properties of PLA-carbon composites, achieving 10.686 MPa in tensile testing, 43.330 in shore D hardness test, and a density of 1.200 g/cm3 in density measurement. The findings suggest that PLA-carbon composites have the potential for enhanced performance in various industrial applications, particularly in sectors requiring improved physical and electrical properties.

Characteristic Evaluation of FA-Based Geopolymer with PLA Fiber (PLA 섬유를 가진 다공성 플라이애시 기반 지오폴리머의 특성 평가)

  • Kwon, Seung-Jun;Hwang, Sang-Hyeon;Cho, Young-Keun;Kim, Tae-Sang;Moon, Eun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.187-193
    • /
    • 2019
  • Regarding physical absorption mechanism for fine particles(Dust), internal pore-bridging is a major parameter in porous media. In this paper, internal bridging pore system is invented through FA-based geopolymer and incorporated PLA (Polylactic Acid) fiber with biodegradability. With various mix proportions, compressive strength over 20MPa is obtained but PLA is little dissolved in the condition of NaOH 5mole and $30^{\circ}C$ of temperature, which was found that temperature rising accelerates PLA solubility. Within 24hours, beads type PLA is completely dissolved under $90{\sim}130^{\circ}C$ and NaOH 5~12mole of alkali. In room condition, geo-polymerization is limitedly occurs so that the internal pore after PLA dissolution is thought to be effective to absorption and storage of fine particles.

Clinical comparison of resorbable and nonresorbable Barrier in guided tissue regeneration of human intrabony defects (흡수성 차폐막을 이용한 조직유도재생술의 임상적 효과)

  • Hur, Yin-Shik;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.193-207
    • /
    • 1999
  • The purpose of this study was to compare the clinical results of guided tissue regeneration(GTR) using a resorbable barrier manufactured from an copolymer of polylactic acid (PLA) and polylaetic-glycolic acid(PLGA) with those of nonresorbable ePTFE barrier. Thirty two patients(25 to 59 years old) with one radiographically evident intrabony lesion of probing depth ${\geq}$6mm participated in a 6-month controlled clinical trial. The subjects were randomly divided into three independent groups. The first group(n=8) received a ePTFE barrier. The second group (n=12) received a resorbable PLA/PLGA barrier. The third group (n=12) received a resorbable PLA/PLGA barrier combined with an alloplastic bone graft. Plaque index (PI), gingival index(GI), probing depth(PD), gingival recession, clinical attachment level(CAL), and tooth mobility were recorded prior to surgery and at 3, 6 months postsurgery, Statistical tests used to analyze these data included independent t-test, paired t-test, one-way ANOVA. The results were as follows : 1. Probing depth was significantly reduced in all groups at 3, 6 months postsurgery and there were not significant differences between groups. 2. Clinical attachment level was significantly increased in all groups at 3, 6 months postsurgery and there were not significant differences between groups. 3. There were not significant differences in probing depth, clinical attachment level, gingival recession, tooth mobility between second group (PLA/PLGA barrier) and third group (PLA/PLGA barrier combined with alloplastic bone graft) 4. Tooth mobility was not significantly increased in all groups at 3, 6 months postsurgery and there were not significant differences between groups. In conclusion, PLA/PLGA resorbable barrier has similar clinical potential to eP'IFE barrier in GTR procedure of intrabony pockets under the present protocol.

  • PDF

Clinical courses and degradation patterns of absorbable plates in facial bone fracture patients

  • Kim, Young Min;Lee, Jong Hun
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • Background: Absorbable plates are widely used in open reduction and internal fixation surgeries for facial bone fractures. Absorbable plates are made of polyglycolic acid (PGA), polylactic acid (PLA), polydioxane (PDS), or various combinations of these polymers. The degradation patterns of absorbable plates made from different polymers and clinical courses of patients treated with such plates have not been fully identified. This study aimed to confirm the clinical courses of facial bone fracture patients using absorbable plates and compare the degradation patterns of the plates. Methods: A retrospective chart review was conducted for 47 cases in 46 patients who underwent open reduction and internal fixation surgery using absorbable plates to repair facial bone fractures. All surgeries used either PLA/PGA composite-based or poly-L-lactic acid (PLLA)/hydroxyapatite (HA) composite-based absorbable plates and screws. Clinical courses were confirmed and comparisons were conducted based on direct observation. Results: There were no naturally occurring foreign body reactions. Post-traumatic inflammatory responses occurred in eight patients (nine cases), in which six recovered naturally with conservative treatment. The absorbable plates were removed from two patients. PLA/PGA compositebased absorbable plates degraded into fragments with non-uniform, sharp surfaces whereas PLLA/HA composite-based absorbable plates degraded into a soft powder. Conclusion: PLA/PGA composite-based and PLLA/HA composite-based absorbable plates showed no naturally occurring foreign body reactions and showed different degradation patterns. The absorbable plate used for facial bone fracture surgery needs to be selected in consideration of its degradation patterns.

Optimization of Ascorbic Acid Encapsulation in PLA Microcapsules Using Double Emulsion Process (이중유화법을 이용한 PLA 마이크로캡슐 내부로의 아스코르브산 캡슐화 공정 최적화)

  • Ji Won Yun;Young Mi Chung
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2024
  • This study analyzed the influence of process variables affecting the thermodynamic equilibrium and fluid dynamics of interfaces such as reverse micelle, salt concentration, interfacial tension, and viscosity of fluids to optimize the microencapsulation process using the W1/O/W2 double emulsion method. The process variable with the greatest impact on encapsulation efficiency was found to be the difference in osmotic pressure between the W1 and W2 phases. It was observed that increasing the salt concentration in the W2 phase or decreasing the ascorbic acid concentration in the W1 phase resulted in higher encapsulation efficiency. Additionally, a larger difference in osmotic pressure led to increased damage to the surface of the microparticles, as confirmed by SEM images. The introduction of reverse micelles, which was anticipated to increase encapsulation efficiency, either had a low contribution or even decreased encapsulation efficiency. The yield of microcapsules was expressed as a universal function, applicable to all process conditions or solution compositions. According to this universal function, no further increase in yield was observed beyond the Ca (capillary number) of approximately 20.