• Title/Summary/Keyword: polyethylene (PE)

Search Result 518, Processing Time 0.026 seconds

Measurement of Liquid Entry Pressure of PE and PVDF Hollow Fiber Membranes in Membrane Distillation Process (막증류 공정에서 PE 및 PVDF 중공사막의 액체투과압력 측정에 관한 연구)

  • Min, Ji Hee;Park, Min Soo;Kim, Jinho
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.216-222
    • /
    • 2015
  • The method measuring LEP (liquid entry pressure) was optimized to evaluate the wettabilities of hydrophobic membranes which might affect long-term durability of membrane in MD (membrane distillation) process. Conductivity of the permeate was monitored to measure the LEPs of PE (polyethylene) and PVDF (polyvinylidene di-fluoride) hollow fiber membranes from highly concentrated synthetic feed water of 20 wt% NaCl. Holding time over 5 min and the ratio of membrane area to the tank volume more than $10m^2/m^3$ were required to ensure LEP value.

Fabrication of a High Porous Polyethylene Membrane Using BET as a Novel Diluent (새로운 BET 희석제를 이용한 고다공성 폴리에틸렌 분리막 제조)

  • Cho, Inhyun;Lee, Soomi;Kim, Chang Keun
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.530-534
    • /
    • 2014
  • Polyethylene (PE) membranes having various porosities are used as microfilters and separators in lithium ion batteries. Membranes having a high porosity are required for use as separators in a large scale lithium ion secondary battery. In this study, BET was examined for use as a new nontoxic diluent for the fabrication of highly porous PE membranes by thermally induced phase separation process. It was confirmed that BET can be used as a new diluent for the fabrication of the PE membranes by exploring upper critical solution temperature type phase behavior of PE mixtures with BET. When the porosity of the membrane prepared from the PE/PO mixture was compared with that prepared from PE/BET mixture, the latter was about 1.8 times higher than the former.

Assessment on the Flame Retardancy for Polyethylene/Montmorillonite Nanocomposite (Polyethylene/Montmorillonite Nanocomposite의 난연성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.72-76
    • /
    • 2006
  • Polymer/clay nanocomposites have generated considerable interests in the past decade because adding just tiny amount of clay to the polymer matrix could produce a dramatic enhancement in physical, thermal and mechanical properties. Smectite clays, such as montmorillonite (MMT), are of great industrial value because of their high aspect ratio, plate morphology, intercalative capacity, natural abundance and low cost. In this study, PE/MMT nanocomposites were directly prepared by melt intercalating PE and the modified clay. The nanostructure was verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their flame retardant properties were measured and discussed by limiting oxygen index (LOI), char yield and smoke mass concentration. And their thermal stabilities were measured by differential thermogravimetric (DTG) and thermogravimetric analysis (TGA). The PE/MMT nanocomposites proved more effective the conventional composites in reinforcement. Two functions in the thermal stability of the PE/MMT nanocomposite, one is the barrier effect to improve the thermal stability, and another is catalysis, leading to a decrease of the thermal stability. The flammability was greatly decreased due to the formation of the clay-enriched protective char during the combustion.

Preparation of Polyethylene Foam Sheets Crosslinked by Gamma-ray Irradiation (감마선 조사에 의하여 가교된 폴리에틸렌 발포 시트의 제조)

  • Lee, Dong-Hoon;Choi, Jun-Ho;Shim, Ki-Hyung;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.211-215
    • /
    • 2012
  • In this study, crosslinked polyethylene (PE) foam sheets were prepared through gamma-ray irradiation. PE foam sheets were prepared through a foaming process using sodium bicarbonate as a blowing and foaming agent. The prepared PE foam sheets were then crosslinked through gamma-ray irradiation. The crosslinking degree was increased to 86.0% with an increase in the absorption dose. The tensile strength of the crosslinked PE foam sheets was increased with an increase in the absorption dose. However, the elongation-at-break of the crosslinked PE foam sheets was decreased. The thermal decomposition temperature of the crosslinked PE foam sheets was increased to $421.2^{\circ}C$ with an increase in the absorption dose. The SEM analysis revealed that the morphology was not changed significantly after the crosslinking through gamma-ray irradiation.

Effect of the Packaging Container on the Freshness of Raw Oysters Crassostrea gigas (생굴(Crassostrea gigas)의 선도 변화에 포장용기가 미치는 영향)

  • Yoon, Na Young;An, Byoung Kyu;In, Jung Jin;Han, Hyeong Gu;Lee, Woo Jin;Seo, Jeong-Hwa;Jeong, Sam Geun;Shim, Kil Bo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.1
    • /
    • pp.73-77
    • /
    • 2022
  • The shelf life of oysters Crassostrea gigas, in two different types of packaging containers, polyethylene (PE) and polyethylene terephthalate (PET), was determined by evaluating the pH, glycogen and soluble protein content, turbidity, and viable cell count. After 7 days of storage, the pH of the packing water in the PE container decreased to 5.88, while the pH in the PET container decreased to 6.03. In the PE container, the glycogen content of the oysters decreased by 0.85 g/100 g and the soluble protein content and turbidity of the packing seawater increased by 1,927.21 mg/100 g and 3.24 McF, respectively. In the PET container, the glycogen content of the oysters decreased by 0.96 g/100 g and the soluble protein content and turbidity of the packing seawater increased by 1,674.75 mg/100 g and 0.98 McF, respectively. The reaction rate constants (K) were as follows: glycogen content, -0.18 (PE) and -0.10 (PET); soluble protein content, 0.29 (PE) and 0.26 (PET); and turbidity, 0.41 (PE) and 0.06 (PET). These results suggested that PET can be used as a new packaging container material for raw oysters because the quality is maintained and it offers more convenient handling during distribution.

A Study on the Synthesis of Oxidized Polyethylene Wax by Controlling Reaction Parameters (공정변수를 조절한 폴리에틸렌 산화왁스 합성에 관한 연구)

  • Yang, Chun-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2003
  • Oxidized polyethylene wax is obtained by oxidation of polyethylene wax and it is composed of various chemicals, e.g., fatty acid, alcohol, ketone and ester. The application of oxidized polyethylene wax is determined by the composition of these chemical substances. In this basic study we observed the basic reaction parameters of time, temperature, oxygen concentration and catalysts on the oxidation reaction of low molecular weight polyethylene(PE wax) by analyzing the acid value, physical and chemical properties of oxidized PE wax to develop a new oxidation process. Acid values are increased with temperature increase in the rage of $150^{\circ}C^{\sim}180^{\circ}C$ but decreased beyond 190$^{\circ}C$. Acid values are also increased with oxygen concentration. As the oxidation reaction proceeds the molecular weight and softening points of oxidation products are decreased by cracking reaction, but the viscosities are increased. To observe the crystallinity of oxidation products SEM experiment was performed. To obtain a high acid-value product in a mild condition, we adopted free radical catalysts and the acid value of the product using catalyst was higher than the product obtained without catalyst in the same reaction condition. The effective initiators were dicumyl peroxide(DCPO), t-butylperoxy-2-ethyl hexanoate(HOPO) and benzoyl peroxide(BPO) having long half-life.

Fabrication and Evaluation of Si3N4-coated Organic/inorganic Hybrid Separators for Lithium-ion Batteries (Si3N4-코팅 유/무기 복합 분리막을 통한 리튬이온전지용 분리막의 제조 및 평가)

  • Yeo, Seung-Hun;Son, Hwa-Young;Seo, Myeong-Su;Roh, Tae-Wook;Kim, Gyu-Chul;Kim, Hyun-Il;Lee, Ho-Chun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.48-53
    • /
    • 2012
  • Polyethylene (PE) separator is the most popular separator for lithium-ion batteries. However, it suffers from thermal contraction and mechanical rupture. In order to improve the thermal/mechanical dimensional stabilities, this study investigated the effects of $Si_3N_4$ coating. SCS (Silicon-nitride Coated Separator) has been fabricated by applying 10 ${\mu}m$-thick $Si_3N_4$/PVdF coating on one side of PE separator. SCS exhibits enhanced thermal stability over $100{\sim}150^{\circ}C$: its thermal shrinkage is reduced by 10~20% compared with pristine PE separator. In addition, SCS shows higher tensile strength than PE separator. Employing SCS hardly affects the C-rate performance of $LiCoO_2$/Li coin-cell, even though its ionic conductivity is somewhat lower than that of PE separator.

Effect of Layered Silicates on Flame retardant and Mechanical Properties of HDPF/$Mg(OH)_2$/Clay Nanocomposites (층상 실리케이트 첨가에 따른 HDPF/$Mg(OH)_2$/Clay 나노복합재의 특성연구)

  • Min, Kyung-Dae;Lee, Kyung-Yong;Lee, Ho-Lim;Kim, Do-Young;Kang, Seung-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.260-260
    • /
    • 2010
  • In recent years, polymer/clay nanocomposites have generated a great interest, both in industry and in academia, because they often exhibit remarkable improvement in material properties when compared with the virgin polymer or conventional micro and macro-composites. Among these properties are stiffness, strength, dimensional stability and permeability. [1-3] The dispersion of hydrophilic silicates in a hydrophobic matrix like Polyethylene (PE) is difficult because of the difference in character between PE and Montmorillonite (MMT). Therefore, it is necessary to modify PE with polar groups, which can increase the hydrophilicity of PE. In this study, High density polyethylene (HDPE)/$Mg(OH)_2$/Montmorillonite (MMT) nanocomposites having a various compositions were prepared by a melt blending technique with an internal mixer and properties namely mechanical, morpology, rheological and thermal properties were investigated

  • PDF

Electrical Characteristics Assessment for PE Series Insulations (PE 계열 절연재 전기적 특성 평가)

  • Jung, Jong-Wook;Jung, Jin-Soo;Han, Woon-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.430-435
    • /
    • 2007
  • This paper describes the results of electrical characteristics assessment for organic insulations of polyethylene(PE) series insulations and acrylonitrile butadiene styrene copolymer(ABS). In the experiment, 4 kinds of specimens by composition density were tested in relative permittivity, specific resistance and tracking duration. A WinDETA system and a tracking test set manufactured for this assessment were used to measure the dielectric parameters and tracking duration, respectively. In measuring the tracking duration, the time from testing voltage application to testing circuit breaking due to the tracking current was measured. As a result, dielectric dispersion was observed in measuring the relative permittivity of ABS. It was confirmed that the relative permittivity decreased with the density of the PE series insulations and it depends rather on the temperature than frequency. In most specimens, specific resistance exponentially decreased with frequency and the result for each specimen was almost similar. By the way, in the tracking test, all the PE series insulations showed more excellent performance than ABS and especially in the case of HDPE, its tracking withstand performance was the best.