• Title/Summary/Keyword: polyethersulfone hollow fiber membrane

Search Result 16, Processing Time 0.021 seconds

Preparation and Characterization of α-alumina Hollow Fiber Membrane (알루미나 중공사막 제조 및 특성 분석)

  • Che, Jin Woong;Lee, Hong Joo;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.212-219
    • /
    • 2016
  • The alumina hollow fiber membranes were prepared by spinning and sintering a polymer solution containing suspended alumina powders. For determine pore structure of hollow fiber membranes formed by different solvent-nonsolvent interaction rate, dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), triethylphosphite (TEP) were prepared in dope solution by solvent, polyethersulfone (PESf) and polyvinylpyrrolidone (PVP) were used as a polymer binder and additive. The pore structure of hollow fiber membranes was characterized using scanning electron microscope (SEM). The alumina hollow fiber membranes prepared by DMSO, DMAc were had the asymmetric structure mixed sponge-like and finger-like morphology, while TEP solvent were had single sponge-like structure. The prepared hollow fiber membranes were analyzed gas permeation and mechanical strength experiment also. The hollow fiber membrane having single sponge-like structure was had high gas permeation performance. On the contrary to this, more finger-like morphology was less gas permeation performance.

Modification of polyethersulfone hollow fiber membrane with different polymeric additives

  • Arahman, Nasrul;Mulyati, Sri;Lubis, Mirna Rahmah;Razi, Fachrul;Takagi, Ryosuke;Matsuyama, Hideto
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.355-365
    • /
    • 2016
  • The improvement of fouling resistance of porous polymeric membrane is one of the most important targets in membrane preparation for water purification in many process like wastewater treatment. Membranes can be modified by various techniques, including the treatment of polymer material, blending of hydrophilic polymer into polymer solution, and post treatment of fabricated membrane. This research proposed the modifications of morphology and surface property of hydrophobic membrane by blending polyethersulfone (PES) with three polymeric additives, polyvinylpyrrolidone (PVP), Pluronic F127 (Plu), and Tetronic 1307 (Tet). PES hollow fiber membranes were fabricated via dry-wet spinning process by using a spinneret with inner and outer diameter of 0.7 and 1.0 mm, respectively. The morphology changes of PES blend membrane by those additives, as well as the change of performance in ultrafiltration module were comparatively observed. The surface structure of membranes was characterized by atomic force microscopy and Fourier transform infra red spectroscopy. The cross section morphology of PES blend hollow fiber membranes was investigated by scanning electron microscopy. The results showed that all polymeric additives blended in this system affected to improve the performances of PES membrane. The ultra-filtration experiment confirmed that PES-PVP membrane showed the best performance among the three membranes on the basis of filtration stability.

Carbon Dioxide Separation by Hollow Fiber Membrane of Polyethersulfone : Comparison of Experimental Results with Numerical Analysis Data (Polyethersulfone 중공사 분리막에 의한 이산화탄소 분리 : 실험과 수치해석 비교)

  • Lee, Yong-Taek;Song, In-Ho;Ahn, Hyo-Seong;Jeon, Hyung-Soo;Joung, Houn-Kyu;Kim, Jeong-Hoon;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.134-139
    • /
    • 2007
  • Experimental and numerical analysis were performed for separation of carbon dioxide from carbon dioxide and nitrogen gas mixture using a polyethersulfone hollow fiber membrane. The experimental results were compared with those obtained at the same operating condition by the numerical analysis. It was observed that there was a big difference between the experimental results and those by a numerical analysis where the permeance of carbon dioxide and its ideal selectivity over nitrogen were obtained from the pure gas permeation. Therefore, the permeance of carbon dioxide and its selectivity were obtained from the separation experimental results using the numerical analysis as a function of the mole fraction of carbon dioxide, the feed pressure and the permeate pressure in the gas mixture. The results of the numerical analysis using the selectivity obtained from the gas mixture were in good agreement with those of the experimental.

Studies on the $N_2/SF_6$ Permeation Behaviors Using the Polyethersulfone Hollow Fiber Membranes (폴리이서설폰 중공사 막을 이용한 $N_2/SF_6$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;Kim, Dae-Hoon;An, Young-Mo;Jo, Hang-Dae;Park, Jong-Soo
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.244-251
    • /
    • 2009
  • In this research the polyethersulfone hollow fiber membrane was used to separate Sulfur Hexafluoride ($SF_6$) which is the one of the six greenhouse gases from Air ($N_2$). The effects of the non-solvent (Acetone, Ethanol) type, air-gap and post-treatment (surface silicon coating) were investigated by the structure and performance of the membranes. The structure change of the membrane was examined by scanning electron microscope. The single gas permeation using $N_2$, $SF_6$ through the membrane surface coated with silicon showed maximum 7.64 perm-selectivity improved 3.4 times.

Numerical Analysis for Separation of Carbon Dioxide by Hollow Fiber Membrane with Cocurrent Flow (병류흐름의 중공사 분리막에 의한 이산화탄소 분리 수치 해석)

  • Lee Yong-Taek;Song In-Ho;Ahn Hyo-Seong;Lee Young-Jin;Jeon Hyun-Soo;Kim Jeong-Hoon;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.204-212
    • /
    • 2006
  • A numerical analysis was carried out for separation of carbon dioxide from carbon dioxide/nitrogen gas mixture by a polyethersulfone hollow fiber membrane which has shown a good stability against plasticization by carbon dioxide and an excellent separation efficiency fur carbon dioxide from its gas mixture. A computer program for carbon dioxide separation was developed using the Compaq Visual Fortran 6.6 software. Governing module equations were thought to be an initial-value problem and the nonlinear ordinary differential equations were simultaneously solved using the Runge-Kutta-Verner fifth-order method. From results of numerical analysis, the carbon dioxide partial pressure of the feed stream, the pressure ratio of the feed side to the permeate side and the feed gas residence time at the inside of a membrane were found to be very important factors to affect the permeation characteristics of carbon dioxide.

A Study on the Permeance Through Polymer Membranes and Selectivity of $CH_4/N_2$ (폴리이미드와 폴리이써설폰 분리막을 이용한 $CH_4/N_2$의 투과선택도 특성)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Lee, Gang-Woo;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.498-504
    • /
    • 2011
  • In this research, hollow fiber membranes were used in order to investigate to permeation and selectivity of the $CH_4$ and $N_2$. Polyimide and polyethersulfone hollow fiber membrane were prepared by the dry-wet phase inversion method and the module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy (SEM) studies showed that the produced fibers typically had an asymmetric structure. The permeance of $CH_4$ and $N_2$ were increased with pressure and temperature. However, the selectivity was decreased with increasing temperature. The permeances of $CH_4$ and $N_2$ were decreased with increasing the air gap and the effect of post-treatment on membrane showed the increase in permeance up to 3.2~7.0 times.

Analysis of Carbon Dioxide Separation with Countercurrent Flow in Hollow Fiber Membrane by Numerical Analysis (수치해석에 의한 향류 흐름 중공사 분리막의 이산화탄소 분리 성능 해석)

  • Lee, Yong-Taek;Song, In-Ho;Ahn, Hyo-Seong;Lee, Young-Jin;Jeon, Hyun-Soo;Kim, Jeong-Hoon;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.252-258
    • /
    • 2006
  • A numerical analysis was performed for a separation process of carbon dioxide from a flue gas stream using polyethersulfone hollow fiber membranes. Countercurrent flow governing equations were regarded to be two point boundary-value problem and the nonlinear ordinary differential equation were simultaneously solved using the finite- difference method. A computer program was developed using the Compaq Visual Fortran 6.6 software. The carbon dioxide permeate driving force and the fred gas residence time at the inside of membrane were found to be very important factors affecting the permeation characteristics of carbon dioxide. The carbon dioxide concentration in the permeate and the flow rate of the permeate were found to be slightly larger by a few percent with a countercurrent flow analysis than those with a cocurrent flow analysis.

Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation (온실기체 분리용 폴리이서설폰 비대칭 중공사 막의 제조)

  • Kim Jeong-Hoon;Sohn Woo-Ik;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.