• Title/Summary/Keyword: polyetheretherketone implant

Search Result 12, Processing Time 0.017 seconds

A Finite element stress analysis of abutment screw according to the implant abutment material (임플란트 지대주 재질에 따른 지대주나사의 유한요소 응력 분석)

  • Kim, Nam-Sic;Lee, Myung-Kon;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Purpose: The present study was to determine the stress distribution of an abutment screw according to implant abutment material. Methods: This study was a tightening torque 10 Ncm, 20 Ncm, set to 30 Ncm, and a titanium alloy (Ti-6Al-4V), PEEK (polyetheretherketone), Endoligns (60% Carbon Fiber Reinforced PEEK) material of the custom abutment titanium alloy (Ti-6Al-4V) the stress distribution in the material of the abutment screw will be evaluated by the finite element analysis. Results: Abutment screw most stress has been concentrated on the interface between the fixture and the abutment was also part of the interface that the threads are started. Depending on the abutment of the abutment screw Material von Mises stress values are shown differently. 10Ncm T10 under the tightening torque of 294.2 MPa, P10 is 562.8 MPa, appeared to E10 is 295.8 MPa, 20Ncm tightening torque under T20 is 581.1 MPa, P20 is 1125 MPa, E20 was shown to 585.1 MPa, 30Ncm tightening torque under T30 is 918.2 MPa, P30 is 1795 MPa, E30 has appeared 925.1 MPa. Conclusion: If the abutment is used as Endoligns, it was confirmed that the abutment screw exhibits of von Mises stress value is similar to the titanium alloy abutment.

Physical and mechanical changes on titanium base of three different types of hybrid abutment after cyclic loading

  • Rimantas Oziunas;Jurgina Sakalauskiene;Laurynas Staisiunas;Gediminas Zekonis;Juozas Zilinskas;Gintaras Januzis
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • PURPOSE. This study investigated the physical and mechanical changes in the titanium base of three different hybrid abutment materials after cyclic loading by estimating the post-load reverse torque value (RTV), compressive side fulcrum wear pattern of titanium base, and surface roughness. MATERIALS AND METHODS. A total of 24 dental implants were divided into three groups (n = 8 each): Group Z, LD, and P used zirconia, lithium disilicate, and polyetheretherketone, respectively, for hybrid abutment fabrication. RTV was evaluated after cyclic loading with 50 N for 1.2 × 106 chewing cycles. The compressive sides of the titanium bases were analyzed using a scanning electron microscope, and the roughness of the affected areas was measured using an optical profilometer after loading. Datasets were analyzed using Kruskal-Wallis test followed by Mann-Whitney tests with the Bonferroni correction (α = .05). RESULTS. Twenty-three samples passed the test; one LD sample fractured after 770,474 cycles. Post-load RTV varied significantly depending on the hybridabutment material (P = .020). Group P had a significantly higher median of post-load RTVs than group Z (16.5 and 14.3 Ncm, respectively). Groups LD and P showed minor signs of wear, and group Z showed a more pronounced wear pattern. While evaluating compressive side affected area roughness of titanium bases, lower medians were shown in group LD (Ra 0.16 and Rq 0.22 ㎛) and group P (Ra 0.16 and Rq 0.23 ㎛) than in group Z (Ra 0.26 and Rq 0.34 ㎛); significant differences were found only among the unaffected surface and group Z. CONCLUSION. The hybrid abutment material influences the post-load RTV. Group Z had a more pronounced wear pattern on the compressive side of titanium base; however, the surface roughness was not statistically different among the hybridabutment groups.