• Title/Summary/Keyword: polyester-acrylate resin

Search Result 7, Processing Time 0.022 seconds

Preparation of Unsaturated Polyester-based Hybrid Gel-Coats Containing Urethane Acrylate and Their Coating Performance

  • Kim, Ji-Hee;Baek, Seung-Suk;Kim, Oh Young;Park, Dong Hyup;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.247-251
    • /
    • 2019
  • Two different urethane acrylates (mono-acrylate and di-acrylate) were used to prepare unsaturated polyester-based hybrid gel-coats. The physical properties and surface characteristics of these gel-coats were investigated on the basis of the content and type of urethane acrylate. The set-to-touch time increased and the physical properties (surface hardness and tensile strength) decreased with an increase in the urethane acrylate content. However, the type of urethane acrylate did not affect these parameters. It was found that the optimal urethane acrylate content for the application of unsaturated polyester-based hybrid gel-coats is ~10 wt%.

UV-curable polyester-acrylate coating with antimony doped tin oxide nanoparticles

  • Sung, Si-Hyun;Kim, Dae-Su
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.478-481
    • /
    • 2010
  • Antimony doped tin oxide (ATO) nanoparticles were added as nanofillers to UV-curable polyester-acrylate (PEA) resin for coating to improve thermal, mechanical, and electrical properties. In this study, ATO nanoparticles were grafted by 3-glycidyloxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane respectively to improve dispersion and interfacial adhesion. The physical properties and surface scratch hardness of the UV-curable nanocomposite coating were improved considerably by introducing the modified ATO nanoparticles.

  • PDF

Study on the Properties of UV-curable Polyurethane acrylate with reactive diluents content (자외선 경화형 폴리우레탄 아크릴레이트 수지의 반응성 희석제 함량에 따른 물성 연구)

  • Sim, Jae Hak;Seo, Eun Sun;Lee, Won Young;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.18 no.4
    • /
    • pp.159-165
    • /
    • 2017
  • In this study, we synthesized UV-curable urethane acrylates with different contents of BA, reactive diluent and characterized their physical properties such as thermal, mechanical properties, adhesive strength and flexibility resistance. From a result of DSC, Tg of polyol and acrylate resin were separated as the BA content increased more than 40%. Also, tensile strength, elongation and adhesive strength decreased with increasing the BA content. The UV-curable urethane acrylate with 40% BA has shown good flexibility resistance compared to other resin due to poor hardness and Tm of acrylate resin.

Study on the Preparation and Properties of Polyurethane-Acryl Emulsion Resin (폴리우레탄-아크릴 에멀젼 수지 제조 및 물성에 관한 연구)

  • Kim, Hong-Tae;Lee, Myung-Cheon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • In this study, polyurethane-acryl emulsion resins were synthesized from HDI (hexamethylene diisocyanate), IPDI (isophorone diisocyanate), Polyol, 2-HEMA (2-hydroxy ethylmethacrylate), n-BA (n-butyl acrylate) and MMA (methylmethacrylate). The effects of polyol types on the properties of polyurethane-acryl emulsion resin, such as degree of strength and water resistance and on the manufacturing process were investigated. In addition, the results were compared with those of acrylic emulsion. The test results showed that polyester type polyol demonstrated stronger tensile strength and higher water resistance with time than did acrylic emulsion and polyether type polyol.

Synthesis and Characterization of Theophylline Molecularly Imprinted Polymers (테오필린 분자 날인 고분자의 합성 및 특성)

  • Ryu, Ho-Sik;Kim, Beom-Soo;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.138-142
    • /
    • 2008
  • Molecularly imprinting technology is an effective method to prepare a synthetic material with a high selectivity to a target molecule. In this study, a molecularly imprinted polymer (MIP) was synthesized via UV-polymerization using theophylline and UV-curable polyester-acrylate resin as a template molecule and a crosslinker, respectively. To elucidate the effects of functional monomer type on the performance of the MIP, each MIP was synthesized using mathacrylic acid, acrylic acid, and acryl amide as functional monomers. Each MIP showed higher rebinding capacity to theophylline than its corresponding non-imprinted polymer (NIP). The MIP synthesized using mathacrylic acid as a functional monomer showed the highest rebinding capacity to theophylline. The selectivity of the MIP was investigated using a solution with caffeine having a very similar structure to theophylline. The binding performance of the MIP to theophylline decreased when distilled water was used as a solvent, which has more polarity than chloroform.

Synthesis of UV Curable Polyurethane Adhesives Based on Various Compositions of Mixed Polyol with Improved Adhesion and Flexural Properties (다양한 조성의 혼용 폴리올에 기초한 접착력 및 굴곡성이 향상된 자외선 경화형 폴리우레탄 접착제의 합성)

  • Won-Young Lee;Soo-Yong Park;Guni Kim;Ildoo Chung
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.137-143
    • /
    • 2022
  • In this study, the polyurethane acrylates (PUA) resin with good adhesive and flexibility for adhesive for shoes and clothing were synthesized using that poly(tetramethylene adiphate glycol) (PTAd), poly(tetramethylene ether glycol) (PTMG) as polyester polyol and polyether polyol respectively, including 4,4'-methylene diphenyl diisocyanate (MDI), isophorone diisocyanate (IPDI), 1,4-butandiol (1,4-BD), 2-hydroxyethyl methacrylate (2-HEMA) and dibutyl amine (DBA). The effect of polyol blend in the polyurethane acrylate on thermal and mechanical properties, adhesion strength and flexural strength were studied. The glass transition temperature (Tg) of PUA was confirmed in range of -70~-40 ℃. In addition, the glass transition temperature (Tg), decomposition temperature (Td), tensile strength adhesion strength and heat resistance were increased as increasing of PTAd amount while the elongation, water resistance and flexural properties were decreased. The synthesized polyurethane acrylate with 5:5 ratio of PTAd and PTMG indicated the highest adhesion strength and flexural properties.

A Study on Stress Corrosion Cracking of Fiber Reinforced Composite by Slow Strain Rate Test (저변형률시험법에 의한 섬유강화 복합재료의 응력부식균열에 관한 연구)

  • Lim, Jae-Gyu;Choi, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3433-3440
    • /
    • 1996
  • This paper was investigation of the stres corrosion cracking(SCC) mechanism and the properties of corrosion fracture surface of glass fiber reinforced plastics(GFRP) produced by hand lay up(HLU) method in synthetic sea water. Test material is GFRP, that was used vinylester type epoxy acrylate resin and an unsaturated polyester as the matrix and the chopped strand mat(CSM) type E-glss fiber as the reinforcement. The slow strain rate test(SSRT) was performed on dry, wet and saturated wet specimens in sea water. Here the pH concentration of synthetic sea water was 8.2 and the strain rate is 1 x $10^{-6}$($sec^{-1}$) and test temperature ranges varied from $-60^{\circ}C$ to $80^{\circ}C$. It could be confirmed the fact that wet specimens tested at a particular test temperature ranges were appeared the eviences of SCC such as con-planar, mirror and hackle zone. Moreover, SCC of GFRP in sea water was characterised by falt fracture surfaces with only small amounts of fiber pull-out, in partial.