• Title/Summary/Keyword: polycyclic aromatic hydrocarbon

Search Result 159, Processing Time 0.024 seconds

Oleanolic Acid Protects the Skin from Particulate Matter-Induced Aging

  • Kim, Youn Jin;Lee, Ji Eun;Jang, Hye Sung;Hong, Sung Yun;Lee, Jun Bae;Park, Seo Yeon;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.220-226
    • /
    • 2021
  • The role of particulate matter (PM) in health problems including cardiovascular diseases (CVD) and pneumonia is becoming increasingly clear. Polycyclic aromatic hydrocarbons, major components of PM, bind to aryl hydrocarbon receptor (AhRs) and promote the expression of CYP1A1 through the AhR pathway in keratinocytes. Activation of AhRs in skin cells is associated with cell differentiation in keratinocytes and inflammation, resulting in dermatological lesions. Oleanolic acid, a natural component of L. lucidum, also has anti-inflammation, anticancer, and antioxidant characteristics. Previously, we found that PM10 induced the AhR signaling pathway and autophagy process in keratinocytes. Here, we investigated the effects of oleanolic acid on PM10-induced skin aging. We observed that oleanolic acid inhibits PM10-induced CYP1A1 and decreases the increase of tumor necrosis factor-alpha and interleukin 6 induced by PM10. A supernatant derived from keratinocytes cotreated with oleanolic acid and PM10 inhibited the release of matrix metalloproteinase 1 in dermal fibroblasts. Also, the AhR-mediated autophagy disruption was recovered by oleanolic acid. Thus, oleanolic acid may be a potential treatment for addressing PM10-induced skin aging.

Mechanisms of Resorcinol Antagonism of Benzo[a]pyrene-Induced Damage to Human Keratinocytes

  • Lee, Seung Eun;Kwon, Kitae;Oh, Sae Woong;Park, Se Jung;Yu, Eunbi;Kim, Hyeyoun;Yang, Seyoung;Park, Jung Yoen;Chung, Woo-Jae;Cho, Jae Youl;Lee, Jongsung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.227-233
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and ubiquitous environmental toxin with known harmful effects to human health. Abnormal phenotypes of keratinocytes are closely associated with their exposure to B[a]P. Resorcinol is a component of argan oil with reported anticancer activities, but its mechanism of action and potential effect on B[a]P damage to the skin is unknown. In this study, we investigated the effects of resorcinol on B[a]P-induced abnormal keratinocyte biology and its mechanisms of action in human epidermal keratinocyte cell line HaCaT. Resorcinol suppressed aryl hydrocarbon receptor (AhR) activity as evidenced by the inhibition of B[a]P-induced xenobiotic response element (XRE)-reporter activation and cytochrome P450 1A1 (CYP1A1) expression. In addition, resorcinol attenuated B[a]P-induced nuclear translocation of AhR, and production of ROS and pro-inflammatory cytokines. We also found that resorcinol increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activity. Antioxidant response element (ARE)-reporter activity and expression of ARE-dependent genes NAD(P)H dehydrogenase [quinone] 1 (NQO1), heme oxygenase-1 (HO-1) were increased by resorcinol. Consistently, resorcinol treatment induced nuclear localization of Nrf2 as seen by Western analysis. Knockdown of Nrf2 attenuated the resorcinol effects on ARE signaling, but knockdown of AhR did not affect resorcinol activation of Nrf2. This suggests that activation of antioxidant activity by resorcinol is not mediated by AhR. These results indicate that resorcinol is protective against effects of B[a]P exposure. The mechanism of action of resorcinol is inhibition of AhR and activation of Nrf2-mediated antioxidant signaling. Our findings suggest that resorcinol may have potential as a protective agent against B[a]P-containing pollutants.

Monitoring of Polycyclic Aromatic Hydrocarbon Residues in Environmental Samples in Korea (국내 PAHs 오염 우려지역의 환경 시료 중 PAHs 잔류량 모니터링)

  • Lim, Jong-Soo;Kim, Seong-Soo;Park, Dong-Sik;Joo, Jin-Ho;Lim, Chun-Keun;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.95-105
    • /
    • 2007
  • The aim of this study was to determine the residual amounts of PAHs in environmental samples such as crop, soil and water collected from paddy, upland fields and forestlands near industrial zone and/or a thermal power plant in South Korea. All of the samples were analyzed by GC-mass spectrometer. The average contents of total PAHs in soil samples were 140.2 ${\mu}g\;kg^{-1}$ and the range was from 4.3 to $662.9{\mu}g\;kg^{-1}$. The detection of benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene and dibenzo(a,h) anthracene which have strong carcinogenecity was ranged from 14.2 to 167.8 ${\mu}g\;kg^{-1}$. The residual amounts and detection frequency of PAHs in soil samples from the iron and heavy industrial areas near Pohang and Busan were 3-folds more than those of the other areas. Amounts of PAHs in upland soil samples was 1.5 folds higher than those of paddy soil samples, suggesting that it may be related to the content of organic matter in soil. The average contents of total PAHs in crop samples were 9.7 ${\mu}g\;kg^{-1}$ which ranged from 4.5 to 52.2 ${\mu}g\;kg^{-1}$. However, the residual amounts of PAHs in water samples were not detected. These results showed that soils and crops were slightly contaminated with PAHs. Therefore, the investigation should be continued for evaluating a safety or risk assessment through expansion of regions and crops.

Effects if Benzo(a)pyrene on Natural Killer Cell Activity of Mice (Benzo(a)pyrene이 마우스 자연살해세포 활설에 미치는 영향)

  • Oh, Dong-Il;Kim, Kwang-Hyuk;Lee, Chung-Han;Chung, Hyun-Kee;Park, Jae-Sun
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.257-262
    • /
    • 1998
  • Benzo(a)pyrene(B(a)P), an extensively studied polycyclic aromatic hydrocarbon(PAH), is a common contaminant produced through the burning of fossil fuels, particularly coal, and from the exhaust products of internal combustion engines. It produces a wide range of toxicities, including carcinogenicity in experimental animals. B(a)P has been shown to suppress systemic immunity in experimental animals, which may contribute to the growth of the chemical-induced tumors. Using colorimetric MTT assay natural killer(NK) cell-mediated growth inhibition of tomor cell was measured in normal and B(a)P-exposed C57BL/6 mice. Non-adherent splenocytes of normal or B(a)P-exposed mice were cultured with Yac-1 cells at four different effector/target(E/T) cell ratios ranging from 200/1, 100/1, 50/1, and 25/1 in an assay volume of 0.1 ml. After the optical density of culture wells containing MTT solution was measured at a wavelength of 540 nm, the percentage of dead cells relative to the control target cell number was calculated. The NK activity of B(a)P-exposed mice was markedly lower than that of non-exposed mice group at all E/T ratios. These results indicated that suppression of NK cell activity may play a role in allowing for the growth of tumors.

  • PDF

Purification and Characterization of Superoxide Dismutase in Sphingomonas sp. KS 301 (Sphingomonas sp. KS 301의 Superoxide Dismutase 정제 및 특성)

  • Kang, Hee-Jeong;Jeong, Jae-Hoon;Choi, Ji-Hye;Son, Seung-Yeol
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.83-90
    • /
    • 2007
  • Sphingomonas sp. KS 301, which was isolated from oil contaminated soil, was shown to have five different SODs (SODI, II, III, IV, V) which can be separated by DEAE-Sepharose chromatography, and SOD III was finally purified in this study by ammonium sulfate precipitation, DEAE-Sepharose chromatography, Superose 12 gel filtration and Uno-Q1 ion exchange chromatography. The molecular weight of SOD III was 23 kDa as determined by SDS-PAGE and the apparent molecular weight of the native enzyme was estimated to be approximately 71 kDa by Superose-12 gel filtration chromatography. These data suggest that the purified SOD consists of at least two subunits. The specific activity of the SOD III was higher than Mn type or Fe type SOD of Escherichia coli by 5 fold. To determine the type of SOD III, inhibitory effects of $NaN_{3},\;H_{2}O_{2},\;KCN$ were examined. 10 mM $NaN_{3}$ was able to inhibit 56% of the SOD III activity, which indicates that this SOD is Mn type. The optimum pH of the SOD III was 7.0 and the optimum temperature was $20^{\circ}C$. N-terminal amino acid sequence of purified SOD III was most similar to those of Psudomonase ovalis and Vibrio cholerae among bacteria.

Glutathione-S-transferase Activity and its Changes to Chemical Pollution in Edible Shells and Fishes (식용 어패류 조직중의 glutathione S-transferase 활성과 화학물질 오염에 의한 변화)

  • Song, Mi-Ran;Choe, Sun-Nam;Park, Kwan-Ha
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.206-212
    • /
    • 1998
  • This study was undertaken to explore the applicability of glutathione S-transferase (GST) activity as a predictable indicator to monitor chemical pollution in shells and fishes utilized for food. There were some variations in the basal level of GST activity depending on species tested. Ark shells, Anadara satowi, showed the highest normal enzyme activity, followed by catfish and marine mussels, Mytilus coruscus. White clams, Meretrix lusoria, Israeli carp and catfish had lower activity. When A. satowi was exposed to 3-methyl-cholanthrene (3-MC), a prototypic polycyclic aromatic hydrocarbon for 1 week, GST activity decreased by about 30%. This reduction in GST activity induced by 3-MC did not recover until two weeks after the cessation of exposure. GST activity increased in response to 3-MC in most of the other species studied. The GST elevation in M. coruscus attained its maxinum of about 200% at the termination of 3-MC exposure maintaining this level up to 2 weeks, and declined gradually thereafter. 3-MC also induced GST activity in lsraeli carp in a similar fashion to M. coruscus. Phenobarbital induced GST activity both in M. coruscus and lsraeil carp. Other chemicals. such as clofibrate, butylated hydroxyanisole. hexachlorobenzene, and oxolinic acid did not change the enzyme activity significantly in most speciel. Phenol depressed GST activity only in lsraeli carp. These results suggest that the basal level of GST activity is somewhat variable and that the direction of change in response to chemicals seems to be related to its normal activity. The change in enzyme activity can be a preditable indicator of some environmental chemicals such as PAHs and phenol.

  • PDF

IN HUMAN BREAST CANCER MCF-7 CELLS, ESTROGEN INVOLVES IN CYPIA1 GENE EXPRESSION.

  • Hwang, J.E.;S.H.Eo;Cho, S.N.;Y.Y.Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.107-107
    • /
    • 1997
  • Cytochrome P450 enzymes have been intensively investigated in hepatic tissues and several mammalian cell lines. Compared to most studies about cytochrome P450 isozymes in liver in vivo and hepatic, cell lines in vitro, the study of cytochrome P450IA1 in human breast cancer cells could be very important to understand the mechanism of the regulation of CYPIA1 gene expression and cell growth. MCF-7 human breast cancer cells are well characterized to study estrogen and antiestrogen action due to the fact that they contain high level of estrogen receptor and have biological markers characterized. And also MCF-7 cells express high level of arylhydrocarbon hydroxylase activity and human cytochrome P450IA1 cDNA was cloned from MCF-7 cells. Ah receptor was characterized in many breast cancer cell lines and polycyclic aromatic hydrocarbon such as 3-MC induced the expression of CYPIA1 gene and cytochrome P450- dependent monooxygenase activity. We undertook a study to examine the effect of estrogens and other chemicals on the regulation of human CYPIA1 gene expression in MCF-7 cells via RTPCR analysis, that might help us to understand the mechanism of the regulation of CYPIA1 gene expression and MCF-7 cell growth. Expression vector containing the functional 5'-regulatory region of human CYPIA1 fused to the CAT reporter gene was transfected into estrogen receptor positive MCF-T cells or estrogen receptor negative MDA-MB-231 cells. After these cells were treated with various chemicals, RTPCR was carried out to measure both CYPIA1 mRNA and CAT mRNA levels. 1nM 3-MC increased in both P450 and CAT mRNA levels over those of control by two folds in MCF-7 cells but does not in MDA-MB-231 cells. Estrogen or tamoxifen or retinoic acid or chrysin decreased in both P450 and CAT mRNA levels that were induced by 3-MC in MCF-7 when each chemical was administered with 3-MC concomitantly. These results suggested that the level of CYPIA1 gene expression is modulated with estrogen-related molecules and make it possible to speculate that ER is related to CYPIA1 gene expression and cell growth in breast cancer cells. [Supported by grants from the Korean Ministry of Education ]

  • PDF

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions (열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성)

  • Kim, Yong-Je;Won, Yang-Soo
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.