• Title/Summary/Keyword: polycyclic aromatic hydrocarbon

Search Result 159, Processing Time 0.025 seconds

Thermal Formation of Polycyclic Aromatic Hydrocarbons from Cyclopentadiene (CPD)

  • Kim, Do-Hyong;Kim, Jeong-Kwon;Jang, Seong-Ho;Mulholland, James A.;Ryu, Jae-Yong
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.211-217
    • /
    • 2007
  • Polycyclic aromatic hydrocarbon growth from cyclopentadiene (CPD) pyrolysis was investigated using a laminar flow reactor operating in a temperature range of 600 to $950^{\circ}c$. Major products from CPD pyrolysis are benzene, indene and naphthalene. Formation of observed products from CPD is explained as follows. Addition of the cyclopentadienyl radical to a CPD $\pi$-bond produces a resonance-stabilized radical, which further reacts by one of three unimolecular channels: intramolecular addition, C-H bond $\beta$-scission, or C-C bond $\beta$-scission. The intramolecular addition pathway produces a 7-norbornenyl radical, which then decomposes to indene. Decomposition by C-H bond $\beta$-scission produces a biaryl intermediate, which then undergoes a ring fusion sequence that has been proposed for dihydrofulvalene-to-naphthalene conversion. In this study, we propose C-C bond $\beta$-scission pathway as an alternative reaction channel to naphthalene from CPD. As preliminary computational analysis, Parametric Method 3 (PM3) molecular calculation suggests that intramolecular addition to form indene is favored at low temperatures and C-C bond $\beta$-scission leading to naphthalene is predominant at high temperatures.

Complexation of Co-contaminant Mixtures between Silver(I) and Polycyclic Aromatic Hydrocarbons

  • Yim, Soo-Bin
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.871-879
    • /
    • 2003
  • The complexation of co-contaminant mixtures between Ag(I) and polycyclic aromatic hydrocarbon (PAH) molecules (naphthalene, pyrene, and perylene) were investigated to quantify the equilibrium constants of their complexes and elucidate the interactions between Ag(I) and PAH molecules. The apparent solubilities of PAHs in aqueous solutions increased with increasing Ag(I) ion concentration. The values, K$_1$ and K$_2$ of equilibrium constants of complexes of Ag(I)-PAHs, were 2.990 and 0.378, 3.615 and 1.261, and 4.034 and 1.255, for naphthalene, pyrene, and perylene, respectively, The K$_1$and K$_2$ values of PAHs for Ag(I) increased in the order of naphthalene < pyrene < perylene and naphthalene < pyrene ≒ perylene, respectively, indicating that a larger size of PAH molecule is likely to have more a richer concentration of electrons on the plane surfaces which can lead to stronger complexes with the Ag(I) ion. For the species of Ag(I)-PAH complexes, a 1:1 Ag(I) : the aromatic complex, AgAr$\^$+/, was found to be a predominant species over a 2:1 Ag(I) : aromatic complex, Ag$_2$Ar$\^$++/. The PAH molecules with four or more aromatic rings and/or bay regions were observed to have slightly less affinity with the Ag(I) ion than expected, which might result from inhibiting forces such as the spread of aromatic $\pi$ electrons over o wide molecular surface area and the intermolecular electronic repulsion in bay regions.

Simultaneous Determination of Polycyclic Aromatic Hydrocarbons and Their Nitro-derivatives in Airborne Particulates by Using Two-dimensional High-performance Liquid Chromatography with On-line Reduction and Fluorescence Detection

  • Boongla, Yaowatat;Orakij, Walaiporn;Nagaoka, Yuuki;Tang, Ning;Hayakawa, Kazuichi;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.283-299
    • /
    • 2017
  • An analytical method using high-performance liquid chromatography (HPLC) with fluorescence (FL) detection was developed for simultaneously analyzing 10 polycyclic aromatic hydrocarbons (PAHs) and 18 nitro-derivatives of PAHs (NPAHs). The two-dimensional HPLC system consists of an on-line clean-up and reduction for NPAHs in the 1st dimension, and separation of the PAHs and the reduced NPAHs and their FL detection in the 2nd dimension after column-switching. To identify an ideal clean-up column for removing sample matrix that may interfere with detection of the analytes, the characteristics of 8 reversed-phase columns were evaluated. The nitrophenylethyl (NPE)-bonded silica column was selected because of its shorter elution band and larger retention factors of the analytes due to strong dipole-dipole interactions. The amino-substituted PAHs (reduced NPAHs), PAHs and deuterated internal standards were separated on polymeric octadecyl-bonded silica (ODS) columns and by dual-channel detection within 120 min including clean-up and reduction steps. The limits of detection were 0.1-9.2 pg per injection for PAHs and 0.1-140 pg per injection for NPAHs. For validation, the method was applied to analyze crude extracts of fine particulate matter ($PM_{2.5}$) samples and achieved good analytical precision and accuracy. Moreover, the standard reference material (SRM1649b, urban dust) was analyzed by this method and the observed concentrations of PAHs and NPAHs were similar to those in previous reports. Thus, the method developed here-in has the potential to become a standard HPLC-based method, especially for NPAHs.

The High Performance Liquid Chromatography (HPLC) Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) in Oysters from the Intertidal and Subtidal Zones of Chinhae Bay, Korea

  • Ki Seok Lee;11
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.57-68
    • /
    • 1993
  • Polycyclic aromatic hydrocarbons (PAMs) are ubiquitous contaminants in marine environments. PAHs enter estuarine and nearshore marine environment via several routes such as combustion of fossil fuels, domestic and industrial effluents and oil spills PAHs have been the focus of numerous studies in the world because they owe potentially carcinogenic, mutagenic, and teratogenic to aquatic organisms and humans from consuming contaminated food. However, one can hardly find any available data on PAM content in marine organisms in Korea. The present study was carried out in order to determine PAH content in oysters from the intertidal and subtidal zones of Chinhae Bay, which is located in near urban communities and an industrial complex, and the bay is considered to be a major repositories of PAHs. 16 PAHs were analyzed by High Performance Liquid Chromatography (HPLC) with uv/vis and fluorescence detectors in oysters: they are naphthalene (NPTHL), acenaphthylene (ANCPL), acenaphthene (ACNPN), fluorene (FLURN), phenanthrene (PKEN), anthracene (ANTHR), fluoranthene (FLRTH), pyrene (PYRf), benzo(a)anthracene (BaA), chrysene (CHRY), benzo(b)- fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), dibenz(a, h)anthracene (DhA), benzo(g, h, i)peryne (Bghip) and indeno(1, 2, 3, -cd)pyrene (I123cdP). The PAH contents in oysters from the intertidal and subtidal zones of Chinhae Bay ranged from < 0.1 to 992.0 $\mu\textrm{g}$/kg (mean 69.8 $\pm$ 9.8 $\mu\textrm{g}$/kg). Key words . polycyclic aromatic hydrocarbon, high performance liquid chromatography, oyster, Chinhae Bay.

  • PDF

POLYCYCLIC AROMATIC HYDROCARBON (PAH) MOLECULES IN THE DISKS AROUND LOW MASS STARS

  • Kim, Kyoung Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.36.1-36.1
    • /
    • 2015
  • We present $5-14{\mu}m$ Infrared Spectrograph spectra of 14 T Tauri stars which show Polycyclic Aromatic Hydrocarbon (PAH) features and reside in 0.7 pc from ${\Theta}_1$ Ori C. The spectral types of nine out of 11 stars have spectral type information, with types ranging from K7-M5. These stars do not supply strong enough UV photons to excite PAH emission in their disks. Therefore, we consider the detection of PAH emission in disks around low mass stars illuminated by an external source of UV photons, namely, from Trapezium OB association, including ${\Theta}_1$ Ori C. The morphological features of PAH emission from most disks around K-M type host stars are unique, not belonging to any known classes of PAH features. We found that the PAH emission strengths decrease as the projected distance of the objects from ${\Theta}_1$ Ori C increase. We suggest future far-IR and submm/mm observations for better understanding of the characteristics and distribution of PAHs in these disks.

  • PDF

Biodegradation of PAHs (Polycyclic Aromatic Hydrocarbon) Using Immobilized Cells of Phanerochaete chrysosporium (고정화 Phanerochaete chrysosporium을 이용한 다환 방향족 화합물의 분해)

  • 서윤수;류원률;김창준;장용근;조무환
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.247-253
    • /
    • 2000
  • This study was aimed to enhance polycyclic aromatic hydrocarbon(PAHS) biodegradation rate by repeated-batch treatment using immobilized cells of Phanerochaete chrysosporium. In the repeated-batch operations with 30 mg/L of pyrene the maximum degradation rate was 6.58 mg/L day. As the number of batches increased the concentration of immobilized cells significantly decreased and the degradation rate and specific acitivity gradually increased to a maximum value and then decreased. To have PAH degradation activity and cell mass recovered one batch of cultivation using the growth medium instead of the PAH-degrading medium was carried in the course of repeated-batch operations. This maximum degradation rates of pyrene and anthracene were 4.29 and 4.46 mg/L$.$day respectively. Overall the rate of PAH degradation could be enhanced 2.5-30 folds by using immobilized cells compared to the case of using suspended cells.

  • PDF