• 제목/요약/키워드: polycrystalline metal

검색결과 131건 처리시간 0.023초

운모기판을 이용한 다결정 Si 전이막 성장 연구 (Growth of Transferable Polycrystalline Si Film on Mica Substrate)

  • 박진우;엄지혜;안병태;정영권
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.343-347
    • /
    • 2004
  • We investigated the growth feasibility of polycrystalline Si film on mica substrate for the transfer of the layer to a plastic substrate. The annealing temperature was limited up to $600^{\circ}C$ because of crack development in the mica substrate. Amorphous Si film was deposited on mica substrate by PECVD and was crystallized by furnace annealing. During the annealing, bubbles were formed at the Si/mica interface. The bubble formation was avoided by the Ar-plasma treatment before amorphous Si deposition. A uniform and clean polycrystalline Si film was obtained by coating $NiCl_2$ on the amorphous Si film and annealing at $500^{\circ}C$ for 10 h. The conventional Si lithography was possible on the mica substrate and the devices fabricated on the substrate could be transferred to a plastic substrate.

다결정 다이아몬드 공구를 이용한 Al-Mg계 합금의 미소선삭가공특성에 관한 연구 (A Study on the Micro Turning Machinability of A1-Mg Alloy Using Polycrystalline Diamond Tool)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.122-130
    • /
    • 1996
  • In this study, machinability of some aluminum-magnesium alloy are experimentally investigated using polycrystalline diamond tool with turning, and evaluated some independent cutting variables affected micrometal cutting characteristics as cutting force, specific cutting resistance, shear angles. To know the effect of cutting parameters of single point diamond machining, experiments were performed to measure cutting forces for high speed turning of aluminum alloy 6061-T6, SM45C and FC20 with poly- crystalline diamond and coated cemented carbide tool. Independent cutting variables were changed to a variety of cutting speed, feed rate, rake angles, material properties of workpiece and tool. Futhermore. Some useful informations are obtained in this study can guide micro metal cutting of aluminum alloy with diamond tool.

  • PDF

다결정 CdTe박막의 저저항 접축을 위한 배선금속 및 열처리방법의 효과에 관한 연구 (Effects of lead metal and annealing methods on low resistance contact formation of polycrystalline CdTe thin film)

  • 김현수;이주훈;염근영
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권5호
    • /
    • pp.619-625
    • /
    • 1995
  • Polycrystalline CdTe thin film has been studied for photovoltaic application due to the 1.45 eV band gap energy ideal for solar energy conversion and high absorption coefficient. The formation of low resistance contact to p-CdTe is difficult because of large work function(>5.5eV). Common methods for ohmic contact to p-CdTe are to form a p+ region under the contact by in-diffusion of contact material to reduce the barrier height and modify a p-CdTe surface layer using chemical treatment. In this study, the surface chemical treatment of p CdTe was carried out by H$\_$3/PO$\_$4/+HNO$\_$3/ or K$\_$2/Cr$\_$2/O$\_$7/+H$\_$2/SO$\_$4/ solution to provide a Te-rich surface. And various thin film contact materials such as Cu, Au, and Cu/Au were deposited by E-beam evaporation to form ohmic contact to p-CdTe. After the metallization, post annealing was performed by oven heat treatment at 150.deg. C or by RTA(Rapid Thermal Annealing) at 250-350.deg. C. Surface chemical treatments of p-CdTe thin film improved metal/p-CdTe interface properties and post heat treatment resulted in low contact resistivity to p-CdTe.Of the various contact metal, Cu/Au and Cu show low contact resistance after oven and RTA post-heat treatments, respectively.

  • PDF

Glass/Al/$SiO_2$/a-Si 구조에서 마이크론 크기의 구멍을 통한 금속유도 실리콘 결정화 특성 (Characteristics of metal-induced crystallization (MIC) through a micron-sized hole in a glass/Al/$SiO_2$/a-Si structure)

  • 오광환;정혜정;지은옥;김지찬;부성재
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.59.1-59.1
    • /
    • 2010
  • Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is studied with the structure of a glass/Al/$SiO_2$/a-Si, in which the $SiO_2$ layer has micron-sized laser holes in the stack. An oxide layer between aluminum and a-Si thin films plays a significant role in the metal-induced crystallization (MIC) process determining the properties such as grain size and preferential orientation. In our case, the crystallization of a-Si is carried out only through the key hole because the $SiO_2$ layer is substantially thick enough to prevent a-Si from contacting aluminum. The crystal growth is successfully realized toward the only vertical direction, resulting a crystalline silicon grain with a size of $3{\sim}4{\mu}m$ under the hole. Lateral growth seems to be not occurred. For the AIC experiment, the glass/Al/$SiO_2$/a-Si stacks were prepared where an Al layer was deposited on glass substrate by DC sputter, $SiO_2$ and a-Si films by PECVD method, respectively. Prior to the a-Si deposition, a $30{\times}30$ micron-sized hole array with a diameter of $1{\sim}2{\mu}m$ was fabricated utilizing the femtosecond laser pulses to induce the AIC process through the key holes and the prepared workpieces were annealed in a thermal chamber for 2 hours. After heat treatment, the surface morphology, grain size, and crystal orientation of the polycrystalline silicon (pc-Si) film were evaluated by scanning electron microscope, transmission electron microscope, and energy dispersive spectrometer. In conclusion, we observed that the vertical crystal growth was occurred in the case of the crystallization of a-Si with aluminum by the MIC process in a small area. The pc-Si grain grew under the key hole up to a size of $3{\sim}4{\mu}m$ with the workpiece.

  • PDF

Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers

  • ;강훈구;;;노재근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.219-219
    • /
    • 2012
  • The formation and thermal desorption behaviors of octanethiol (OT) SAMs on single crystalline Au (111) and polycrystalline Au, Ag, and Cu substrates were examined by X-ray photoelectron microscopy (XPS), thermal desorption spectroscopy (TDS), and contact angle (CA) measurements. XPS and CA measurements revealed that the adsorption of octanethiol (OT) molecules on these metals led to the formation of chemisorbed self-assembled monolayers (SAMs). Three main desorption fragments for dioctyl disulfide (C8SSC8+, dimer), octanethiolate (C8S+), and octanethiol (C8SH+) were monitored using TDS to understand the effects of surface morphology and the nature of metal substrates on the thermal desorption behavior of alkanethiols. TDS measurements showed that a sharp dimer peak with a very strong intensity on single crystalline Au (111) surface was dominantly observed at 370 K, whereas a broad peak on the polycrystalline Au surface was observed at 405 K. On the other hand, desorption behaviors of octanethiolates and octanethiols were quite similar. We concluded that substrate morphology strongly affects the dimerization process of alkanethiolates on Au surfaces. We also found that desorption intensity of the dimer is in the order of Au>>Ag>Cu, suggesting that the dimerization process occurs efficiently when the sulfur-metal bond has a more covalent character (Au) rather than an ionic character (Ag and Cu).

  • PDF

ECA기법을 활용한 Al-Mg-Mn-Si 합금의 기계적 성질에 관한 연구 (An Experimental Study for Mechanical Properties of Al-Mg-Mn-Si Alloy by ECA pressing)

  • 국종한
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.785-792
    • /
    • 2011
  • Equal channel angular(ECA) pressing is the established processing technique in which a polycrystalline metal is pressed through the die to achieve a very high plastic strain. Therefore, the capability to produce an ultra-fine grain size in the materials is provided. To investigate that mechanical properties at elevated temperature have the ultrafine grain ECA pressing, experiments were conducted on an Al-4.8% Mg-0.07% Mn-O.06% Si alloy. After having been solution treated at 773K for 2hrs, the billet for ECA pressing was inserted into the die. And it was pressed through two channel of equal to cross section intersecting at a 90 degree angle. The billet can be extrude repeatedly because of 1:1 extrusion ratio. Since the billet is passed through the cannel for 2 times, a large strain is accumulated in the alloy. The tensile tests on elevated temperature were carried out with initial strain rate of $10^{-3}s^{-1}$ at eight temperature distributed from 293K to 673K.

Fabrication of polycrystalline Si films by rapid thermal annealing of amorphous Si film using a poly-Si seed layer grown by vapor-induced crystallization

  • 양용호;안경민;강승모;안병태
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • We have developed a novel crystallization process, where the crystallization temperature is lowered compared to the conventional RTA process and the metal contamination is lowered compared to the conventional VIC process. A very-thin a-Si film was deposited and crystallized at $550^{\circ}C$ for 3 h by the VIC process and then a thick a-Si film was deposited and crystallized by the RTA process at $680^{\circ}C$ for 5 min using the VIC poly-Si layer as a crystallization seed layer. The RTA crystallized temperature could be lowered up to $50^{\circ}C$, compared to RTA process alone. The poly-Si film appeared a needle-like growth front and relatively well-arranged (111) orientation. In addition, the Ni concentration in the poly-Si film was lowered to $3{\times}10^{17}\;cm^{-3}$ and that at the poly-Si/$SiO_2$ interface was lowered to $5{\times}10^{19}\;cm^{-3}$. The reduction in metal contamination could be greatly helpful to achieve a low leakage current in poly-Si TFT, which is the critical parameter for commercialization of AMOLED.

  • PDF

Transient trap density in thin silicon oxides

  • Kang, C.S.;Kim, D.J.;Byun, M.G.;Kim, Y.H.
    • 한국결정성장학회지
    • /
    • 제10권6호
    • /
    • pp.412-417
    • /
    • 2000
  • High electric field stressed trap distributions were investigated in the thin silicon oxide of polycrystalline silicon gate metal oxide semiconductor capacitors. The transient currents associated with the off time of stressed voltage were used to measure the density and distribution of high voltage stress induced traps. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform near both cathode and anode interface in polycrystalline silicon gate metal oxide semiconductor devices. The stress generated trap distributions were relatively uniform the order of $10^{11}$~$10^{12}$ [states/eV/$\textrm{cm}^2$] after a stress. The trap densities at the oxide silicon interface after high stress voltages were in the $10^{10}$~$10^{13}$ [states/eV/$\textrm{cm}^2$]. It was appeared that the transient current that flowed when the stress voltages were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF

세라믹 메탈할라이드 램프 아크튜브 구조에 따른 광학적 특성 (Optical Properties with Arc Tube Structure of Ceramic Metal Halide lamps)

  • 이주호;양종경;김남군;장혁진;박대희
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2244-2248
    • /
    • 2008
  • High intensity metal halide discharge lamp performance, specifically the generated luminous flux and light color content, depends critically on the arc tube design. Factors influencing the design and consequent lamp efficacy include : lamp size, geometry, arc tube composition, fill chemistry, electrode design and excitation modes. Shaping of Polycrystalline Alumina(PCA) can be realized by conventional ceramic processes. Several processes are applied nowadays. Well-known in the ceramic high pressure field for decades are the pressing and the extrusion method. Newly developed slurry and precious forming technologies give the one-body seamless tubes, which improve thickness uniformity and lighting performance. Now, we reported some optical properties with different arc tube structures of ceramic metal halide lamps.

열전변환 장치의 특성 분석에 대한 연구 (Performance Analysis of A Variable-Spacing Cesium Thermionic Energy Converter)

  • Lee, Deuk-Yong
    • 대한전기학회논문지
    • /
    • 제41권9호
    • /
    • pp.1085-1094
    • /
    • 1992
  • A variable-spacing cesium thermionic energy conversion test station is designed and fabricated for the study of power generation. The diode is in the form of a guard-ringed plane-parallel geometry in which a polycrystalline rhenium emitter of 2 cmS02T area faces a radiation-cooled polycrystalline rhenium collector of 1.9 cmS02T area. The emission of plasma from heated refractory electrode metal is the driving reaction in the direct conversion of heat to electricity by thermionic energy conversion. The plasma is produced from electrons and positive ions formed simultaneously by thermionic emission and surface ionization of cesium atoms incident on the hot emitter from the cesium vapor in the diode. And high plasma density causes plasma multiplication within the gap due to volume ionization that results in high power output. The variation of the saturation current of a Knudsen converter is investigated at an emitter-collector gap of 0.1 mm and an emitter temperatures. A maximum power output of 13.47 watta/cmS02T is observed at a collector temperature of 963 K and a cesium reservoir temperature of 603 K.