• Title/Summary/Keyword: polycarboxylate superplasticizers

Search Result 15, Processing Time 0.02 seconds

Effects of Polycarboxylate Type Superplasticizer on the Hydration of Ordinary Portland Cement (보통포틀랜드시멘트의 수화 반응에 미치는 폴리카복실레이트계 고유동화제의 영향)

  • 류호석;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.417-424
    • /
    • 2004
  • Polycarboxylate type superplasticizers (PCA) with different graft chain (Polyethylene oxide) length were synthesized by Methoxypoly (ethyleneglycol)monomethacrylate (MPEGMAA) and methacrylic acid (MAA). The effects of PCA on the hydration of Ordinary Portland Cement (OPC) were investigated by Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) techniques. The effect of graft chain length of PCA on the hydration of OPC was different at early age, but, at long age, was similar. The ratio of relative peak intensity, (I[001]/I[101]), of Ca(OH)$_2$ compared with OPC also was reduced by PCA addition.

Properties of Metakaolin Concrete containing Various Superplasticizers (혼화제 종류에 따른 메타카올린 콘크리트의 특성)

  • 안태호;김용태;강범구;김병기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.539-544
    • /
    • 2002
  • The properties of mortar and concrete including metakaolin as a partial cement replacement were investigated in terms of fluidity and compressive strength. The results show that mortar and concrete in which 10 % of cement is replaced with metakaolin exhibit much higher compressive strength after 3 days of hydration than ordinary Portland cement, indicating that metakaolin can be used in the production of high strength concrete replacing silica fume. The type of superplasticizer largely affected on the fluidity and compressive strength of mortar and concrete including metakaolin. It was concluded that when metakaolin is used for the purpose of manufacturing high strength concrete, it is desirable to use PNS based blends rather than PNS, PMS and polycarboxylate based superplasticizer.

  • PDF

The Physical Fluidity Properties of Concrete Containing Melamine and Naphthalene-type Superplasticizer (멜라민계 및 나프탈렌계 고유동화제가 함유된 콘크리트의 물리적 유동특성)

  • Yoon, Sung-Won;Choi, Byoung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.457-460
    • /
    • 2008
  • It was predicted that the most recent technological developments in concrete technology rely on enhanced admixture efficiency rather than on improvement in cement manufacturing. Four major commercially available of organic chemical admixtures are modified lignosulfonates (LS), sulfonated naphthalene-formaldehyde resins (SNF), sulfonated melamine-formaldehyde resins(SMF) and polycarboxylate(PC). In this study, various sulfonated melamine-formaldehyde (SMF) superplasticizers were synthesized via four synthetic steps and reaction conditions such as the mole ratio of melamine to formaldehyde was changed. After application of SMF superplasticizer to cement concrete, the physical properties including workability, slump loss, compressive strength were compared with SNF

  • PDF

Performance of High Strength Self-Compacting Concrete Beams under Different Modes of Failure

  • Harkouss, Raya Hassan;Hamad, Bilal Salim
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.69-88
    • /
    • 2015
  • Self-consolidating concrete (SCC) is a stable and cohesive high consistency concrete mix with enhanced filling ability properties that reduce the need for mechanical compaction. Limited standards and specifications have been reported in the literature on the structural behavior of reinforced self-compacting concrete elements. The significance of the research presented in this paper stems from the need to investigate the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete beams. To meet the objectives of this research, twelve reinforced concrete beams were prepared with two different generations of superplasticizers and designed to exhibit flexure, shear, or bond splitting failure. The compared beams were identical except for the type of superplasticizer being used (second generation sulphonated-based superplasticizer or third generation polycarboxylate-based superplasticizer). The outcomes of the experimental work revealed comparable resistance of beam specimens made with self-compacting (SCC) and conventional vibrated concrete (VC). The dissimilarities in the experimental values between the SCC and the control VC beams were not major, leading to the conclusion that the high flowability of SCC has little effect on the flexural, shear and bond strengths of concrete members.

The Dispersibility and Adsorption Behaviour of Cement Paste with Molecular Structures of Polycarboxylates (폴리카복실레이트 분자 구조에 따른 시멘트페이스트의 분산 및 흡착 특성 연구)

  • Shin, Jin-Yong;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Young-Seok;Hwang, Eui-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.489-496
    • /
    • 2006
  • Graft copolymerized polycarboxylate(PC)-type superplasticizers which have carboxylic acid with $\pi$ bond among the molecular structure and polyethyleneglycol methyl ether methacrylate(PMEM) were synthesized by free radical reaction. To investigate their chemical structures and molecular weights, PCs were analyzed by FT-IR(fourier transform spectrometer), C-NMR(nuclear magnetic resonance spectrometer) and GPC(gel permeation chromatograpy). When types of carboxylic acids(methacrylic acid, acrylic acid, maleic anhydride, and itaconic acid) and molar ratios of carboxylic acid/PMEM) were varied, adsorptive and fluid characteristics in cement paste were discussed. As the molar ratio of carboxylic acid/PMEM) was higher, amount adsorbed on the cement particles and the fluidity of cement paste by mini-slump spread testing method were increased. When main chain of PC was methacrylic acid, a larger amount was adsorbed on the cement particles. PCs with acrylic acid as main chain showed higher dispersing power. However, it was confirmed that PCs with dicarboxylic acids(maleic anhydride, itaconic acid) didn't have good adsorption and dispersibility.