• Title/Summary/Keyword: polybutene(PB)

Search Result 3, Processing Time 0.018 seconds

Preparation and Physical Properties of Curdlan Composite Edible Films (Curdlan 복합 가식성 필름의 제조와 물성)

  • Han, Youn-Jeong;Roh, Hoe-Jin;Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.158-163
    • /
    • 2007
  • In this study, we prepared curdlan composite films and determined their properties in order to select the most appropriate setting methods, moisture barrier materials, and viscoelasticity enhancing materials. High set curdlan films with polyethylene glycol (PEG) showed higher tensile strength and moisture barrier properties than low set films. Films with oleic acid as a moisture barrier material had greater tensile strength, elongation and moisture barrier properties than films with acetylated monoglyceride (AMG). Lastly, films using polyisobutylene (PIB) as a viscoelasticity enhancing material showed higher elongation than films with polybutene (PB).

Chemical Reaction of Carbon Dioxide with AMP in w/o Emulsion Membrane (W/O 에멀션액막에서 이산화탄소와 AMP의 화학반응)

  • Park Sang-Wook;Choi Byoung-Sik;Kim Seong-Soo;Lee Jae-Wook
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.275-288
    • /
    • 2004
  • Carbon dioxide was absorbed into water-in-oil (w/o) emulsion composed of aqueous 2-amino-2-methyl-1-propanol (AMP) droplets as a dispersed phase and benzene solutions of polybutene and polyisobutylene as a continuous phase in a flat-stirred vessel to investigate the effect of non-Newtonian rheological behavior on the rate of chemical absorption of $CO_2$, where the reaction between $CO_2$ and AMP in the aqueous phase was assumed to be a pseudo-first-order reaction. It was expressed that PIB with elastic property made the rate of chemical absorption of $CO_2$ accelerated by comparison of mass transfer coefficient of $CO_2$ in the non-Newtonian liquid with that in the Newtonian liquid.

Effect of rheological properties on chemical absorption of carbon dioxide with MEA

  • Park, Sang-Wook;Kim, Tae-Young;Park, Byoung-Sik;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.35-45
    • /
    • 2004
  • Rates of chemical absorption of $CO_2$ in water-in-oil (w/o) emulsion were measured in a flat-stirred vessel at $25^{\circ}C$. The w/o emulsion was composed of aqueous monoethanolamine (MEA) droplets as a dispersed phase and non-Newtonian viscoelastic benzene solutions of polybutene (PB) and polyisobutylene (PIB) as a continuous phase. The liquid-side-mass transfer coefficient ($k_L$) was obtained from the dimensionless empirical equation containing Deborah number expressed as the properties of pseudoplasticity of the non-Newtonian liquid. $k_L$ was used to estimate the enhancement factor due to chemical reaction between $CO_2$ and MEA in the aqueous phase. PIB with elastic property of non-Newtonian liquid made the rate of chemical absorption of $CO_2$ accelerate compared with Newtonian liquid.