• Title/Summary/Keyword: polyamine

Search Result 264, Processing Time 0.032 seconds

Polyamine Group Assembled Silica Coated Ferrite Nanoparticle for Lambda DNA Detection

  • Park, Moo-Eon;Chang, Jeong-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1193-1194
    • /
    • 2006
  • The magnetic ferrite nanoparticles were synthesized and coated by silica precursor in controlling the coating thicknesses and sizeses. The surface modification was performed with amino-functionalized organic silanes on silica coated magnetic nanoparticles. The use of functionalized self-assembled magnetic ferrite nanoparticles for nucleic acid separation process give a lot of advantages rather than the conventional silica based process.

  • PDF

Nitrogen Compounds of Korea Ginseng and their Physiological Significance

  • Park, Hoon;Cho, Byung-Goo;Lee, Mee-Kyoung
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.175-189
    • /
    • 1990
  • Nitrogen compounds of Panax ginseng and their biological activities in plant and animal were reviewed. Major nitrogen compounds found in P. ginseng are free amino acids. Water solilble proteins, indouble proteins and peptides. Minor nitrogen compounds are dencichine. Glycolyroteins, amines, alkaloides, methoxy or alkyl pyrazine derivatives, free nucleosides and nucleic acid bases. 4-methyl-i-thiazoltethanol and pyroglutamic acid the contents of total nitrogen and protein in root Increased until 13 years old which was the highest age tinder investigation. Soluble protein content increased with the root weight and was higher in xylem pith than cortex-epidermis indicating the close relation with root growth. Arginine, which covered 58% of total free amino acids, may serve as storage nitrogen. Arginine seems to be changed into proline in rhizome. threonine in stem and again threonine and arginine in leaf. The greater the root weight the higher the polyamine stimulated Polyamine stimlllated the growth of root callus. Physiological roles of other minor nitrogen compounds are unknown although content is relatively high ((1.if) 6.w). Biochemical and pharmacological activities of some nitrogen compounds for animal were more investigated than physiological role there plant itself. Radiation and U.V protective function (heat stable protein). insulin-like activity in lipogenesis and livolysis (adenosine and pyroglutamic acid), depression of blood sugar content (glycopevtide). htmostatic and nellrotoxic activity (dencichine) and, sedative and hypnotic activity (4-methyl-i-thiazoleethanol) are reported. Heat stable protein increased with root age. The traditional quality criteria appear to be well in accordance with biological activities of nitrogen compounds. Chemical studies of nitrogen compounds seem relatively rare, probably due to difficulty of isolation, subsequently the investigations of biological activities are little.

  • PDF

Effects of Methylglyoxal bis-(Guanylhydrazone) and Polyamines on Carbohydrate Metabolism during Adventitious Root Formation in Soybean cotyledons (Methylglyoxal bis-(Guanylhydrazone)과 Polymine이 대두 자엽 부정근 형성시 탄수화물 대사에 미치는 영향)

  • 한태진
    • Journal of Plant Biology
    • /
    • v.37 no.2
    • /
    • pp.195-201
    • /
    • 1994
  • In order to study the effects of polyamine inhibitors and polyamines on adventitious root formation, the correlation between adventitious root formation and carbohydrate metabolism was investigated in inoculated soybean (Glycine max L.) cotyledons at the concentration of $10^{-3}\;M$ methylglyoxal bis-(guanylhydrazone)[MGBG], and $10^{-3}\;M$ MGBG plus $10^{-5}\;M$ polyamines (putrescine, spermidine and spermine), respectively, for the adventitious root formation medium. The contents of starch, maltose and sucrose were lower in control and were higher in the treatments containing $10^{-3}\;M$ MGBG, and $10^{-3}\;M$ MGBG plus $10^{-5}\;M$ polyamines during culture. It was shown that the soluble sugar levels, except glucose, were higher than that of control in most of the treatments and the change in glucose contents tended to be similar to that control. The amylase activity increased in control and MGBG treatment, the maltase activity was higher in control and the invertase activity showed less substantial changes during culture.ulture.

  • PDF

Effect of Germination Temperature, Spermine and Putrescine on Pollen Viability of Strawberry (발아온도 및 Spermine, Putrescine이 딸기의 화분 발아에 미치는 영향)

  • Lee, Jung-Eun;Kim, Hyeon-Do;Je, Byoung-Il;Lee, Yong-Jae;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.415-421
    • /
    • 2020
  • This study was conducted to determine the optimum conditions for the treatment of polyamine to promote pollen germination and improve the fruiting rate by overcoming fertilization defects in low-temperature strawberry cultivation. The optimum temperature for pollen germination of strawberries was 30 ℃ for Seolhyang and 25 ℃ for Maehyang, and Seolhyang had a higher pollen germination rate than that of Maehyang. The addition of polyamines, namely spermine and putrescine to the medium improved the pollen germination rate and spermine treatment showed a better effect than putrescine treatment. The proper polyamine type and treatment concentration for enhancing the potency of pollen germination was 500 μM of spermine for both Seolhyang and Maehyang, which improved the pollen germination rate by 19-23% compared with that of the control. However, combined treatment of spermine and putrescine, resulted in a lower germination rate lower than that of the single treatment. Our results indicated that the treatment of polyamines during flowering in protected cultivation of strawberrise can improve the fruiting rate by overcoming the problem of poor pollen germination due to low temperature.

Complex of zinc(II) with tetraaza macrocyclic ligands in solution (용액에서 Zn(II)이온과 tetraaza 거대고리 리간드의 착물)

  • Koh Kwang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.733-737
    • /
    • 2006
  • In this paper, we report the coordination state and structure of $Zn(cyclam)Cl_{2})$ complex that was studied by the Raman spectrum and conductivity method. The complex of zinc(II) ion with 1,4,8,11-tetraazacyclotetradecane(cyclam) ligand is formed in aqueous solution. According to the Raman spectrum of $Zn(cyclam)Cl_{2})$ complex, $H_{2}O$ molecule and $Cl^{-}$ ion compete for the trans coordination site of zinc(II) ion. We also have investigated the competition effect of $H_{2}O$ molecule and $Cl^{-}$ ion by the conductivity method. On addition of 1,4,8,11-tetraazacyclotetradecane(cyclam) ligand to the aqueous $ZnCl_{2}$ solution, 2: 1 electrolyte is changed to 1:1 electrolyte. We suggest the possibility of elimination of heavy metal because of the affinity effect of macrocyclic polyamine(1,4,8.11-tetraazacyclotetradecane) for the heavy metal,.

  • PDF

Enhancement of Spermidine Content and Antioxidant Capacity by Modulating Ginseng Spermidine synthase in Response to Abiotic and Biotic Stresses

  • Parvin, Shohana;Lee, Ok-Ran;Sathiyaraj, Gayathri;Kim, Yu-Jin;Khorolragchaa, Altanzul;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.14-14
    • /
    • 2011
  • Polyamines (putrescine, spermidine and spermine) play pivotal roles in plant defense to different abiotic and biotic stresses. In order to understand the function of ginseng spermidine synthase gene, a key gene involved in biosynthesis of polyamines, transgenic plant was generated in Arabidopsis. The transgenic plants exhibited high levels of polyamines compared to the untransformed control plants. We investigated the tolerance capacity of transgenic plants to abiotic stresses such as salinity and copper stress. In addition, transgenic plants also showed increased resistance against one of the important fungal pathogens of ginseng, the wilt causing Fusarium oxysporum and one of important bacteria, bacterial blight causing Pseudomonas syringae. However, an activity of the polyamine catabolic enzyme, diamine oxidase (DAO) was increased significantly in F. oxysporum and P. syringae infected transgenic plant. Polyamine catabolic enzymes which may trigger the hypersensitive response (HR) by producing hydrogen peroxide ($H_2O_2$) seem act as an inducer of PR proteins, peroxidase and phenyl ammonium lyase activity. The transgenic plants also contained higher antioxidant enzyme activities, less MDA and $H_2O_2$ under salt and copper stress than the wild type, implying it suffered from less injury. These results strongly suggest an important role of spermidine as a signaling regulator in stress signaling pathways, leading to build-up of stress tolerance mechanisms.

  • PDF