• 제목/요약/키워드: polyacetylene

검색결과 93건 처리시간 0.019초

Benzo(a)pyrene 대사물질들의 DNA에 대한 Adduct 형성 억제에 미치는 Parlalrydol의 효과 (Inhibition of the Formation of Adducts Between Metabolites of Benzo(a)pyrene and DNA by Panaxydol in vivo and in vitro)

  • 박진규;김신일
    • Journal of Ginseng Research
    • /
    • 제13권1호
    • /
    • pp.42-48
    • /
    • 1989
  • PAH 계 화합물들의 Bay region diol epoxide 들의 target tissue에 대한 결합은 암유발과 관련 되어 있다. 본 논문에서는 ICR mice의 간에서의 BP-DNA-adduct 생성에 미치는 poly acetylene 화합물인 panaxynol 과 panaxydol 의 효과를 조사하였 다. Panaxynol 과 panaxydol 을 전처리한 ICR mice 의 간 마이크로좀을 포함하는 incubation system 은 calf thymus DNA 에 대한 BP binding을 뚜렷이 감소시켰다. [$^3H$]-BP($300\mu$Ci/21nmoles/0.1ml DMSO. i. v. ) 즐 mice 에 주사 후 24시간 후에 간 DNA 에서의 방사능을 측정하였다. HPLC 에 의해 cochromatography 한 두개의 standard marker (acetophenone. bytyrophenone)을 사이에 나타나는 DNA adduct 들을 잠정적으로 확인한 결과 (-) BP-7.8-diol로부터 생성되는 major adduct 인 (+) BP-diol epoxide I: dGuo adduct (peak II)는 대조군보다 약 22% 감소된 반면에 minor adduct 인 (-) BP-diol epoxide I: dGuo adduct (peak III)는 대조군의 69%로 감소되었다. 그리고 (+) BP-7, 8-diol로부 터 생성되는 minor adduct 인 BP-diol epoxide I II : Guo adduct (peak IV)는 대조군의 58%로 감소되었다. 이러한 결과는 panaxydol이 ($\pm$) B BP-7,8-diol로부터 일반적으로 생성되는 adduct들 중 major보다는 minor adduct들의 생성에 더 많이 관석했음을 보여준다.

  • PDF

염화 철(III)을 이용한 2-에티닐피리딘의 in-situ4차염화중합을 통한 이온형 폴리아세틸렌 복합체의 합성과 특성 (Synthesis and Properties of Ionic Polyacetylene Composite from the In-situ Quaternization Polymerization of 2-Ethynylpyridine Using Iron (III) Chloride)

  • 김태형;진성호;박종욱;제갈영순
    • 공업화학
    • /
    • 제35권4호
    • /
    • pp.296-302
    • /
    • 2024
  • 염화 철(III)을 이용한 2-에티닐피리딘의 in-situ 4차염화 중합을 통하여 이온성 폴리아세틸렌-염화 철(III) 복합체를 용이하게 합성하였다. 합성한 폴리아세틸렌-염화 철(III) 복합체의 구조를 여러 가지 분석장비를 통해 확인한 결과 설계한 염화 철(III)-피리디늄 치환기를 갖는 공액구조 고분자가 생성되었음을 확인할 수 있었다. 본 중합의 메커니즘은 첫 번째 단계에서 형성된 에티닐피리디늄 염의 중합반응이 개시되고 전파되는 것으로 분석되었다. P2EP-FeCl3 복합체의 전기 광학 및 전기화학적 특성을 연구하였다. P2EP-FeCl3 복합체의 UV-visible 스펙트럼에서 흡수 최대값은 480 nm 및 533 nm이었고 PL 최대값은 598 nm로 나타났다. P2EP-FeCl3 복합체의 순환 전압전류 특성 측정결과 산화 피크와 환원 피크가 비가역적인 전기화학적 거동을 보였으며, 복합체의 산화 환원 과정의 동역학은 스캔 속도 대비 산화 전류 값의 도표부터 확산 제어 프로세스에 가까운 것으로 확인되었다.

탄소계 경질 박막의 연구 및 산업 적용 동향 (Trend in Research and Application of Hard Carbon-based Thin Films)

  • 이경황;박종원;양지훈;정재인
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF