• Title/Summary/Keyword: poly-methyl methacrylate

Search Result 339, Processing Time 0.025 seconds

A Study on Thermal Degradation of Poly (methyl methacrylate) (PMMA) using TGA (TGA를 이용한 Poly(methyl methacrylate) (PMMA)의 열분해 특성 연구)

  • Kim, Sang-Guk;Choi, Hyun-Gyu;Eom, Yu-Jin;Kim, Joo-Sik
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.360-367
    • /
    • 2005
  • PMMA has been used extensively worldwide as industrial and construction materials due to its excellent material properties. When PMMA is subject to thermal degradation, unit of monomers are detached from polymer chain and this phenomena is called unzip reaction. Therefore, PMMA thermally degrades into its monomer. Characteristics of thermal degradation of PMMA has been investigated using TGA in this research as a basic study for recovery of MMA.

  • PDF

STRUCTURAL MORPHOLOGY AND DIELECTRIC PROPERTIES OF POLYANILINE-EMERALDINE BASE AND POLY METHYL METHACRYLATE THIN FILMS PREPARED BY SPIN COATING METHOD

  • Shekar, B. Chandar;Yeon, Ji;Rhee, Shi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1081-1084
    • /
    • 2003
  • Structural morphology, annealing behavior and dielectric properties of polyaniline-emeraldine base (Pani-EB) and poly methyl methacrylate (PMMA) thin films prepared by spin coating technique have been studied. MIM and MISM structures were used to investigate annealing and dielectric behavior. The XRD and AFM spectrum of as grown and annealed thin films indicates the amorphous nature. The observed amorphous phase, low loss, dielectric behavior and thermal stability even at high temperatures implies the feasibility of utilizing PMMA and Pani-EB thin films as gate dielectric insulator layer in organic thin film transistors which can find application in flat panel display.

  • PDF

A Study on the Dispersion of Multi-walled Nanotube of MWNT/PMMA Nanocomposites (MWNT/PMMA 나노복합재료 제작시 MWNT의 분산에 관한 연구)

  • 김현철;이상의;김천곤;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.29-32
    • /
    • 2003
  • Multi -walled carbon nanotube(MWNT)/poly(methyl methacrylate) composites were fabricate d through film casting. Manufacturing process was established using a ultrasonic cleaner and a homogenizer. Acetone was used as a solvent to melt PMMA and mix with MWNT. The ultrasonic cleaner performed an important role in producing MWNT/MMA nanocomposites. Ultrasonic energy was utilized to disperse MWNT in acetone. Also, melting PMMA in acetone and mixing MWNT and PMMA were achieved using the homogenizer. It was confirmed that the nanohlbes were well dispersed in PMMA according to SEM images.

  • PDF

Electrochemical Properties of Lithium-Ion Polymer Battery with PMMA IPN-Based Gel Polymer Electrolyte (PMMA IPN계 겔폴리머전해질을 채용한 리튬이온폴리머전지의 전기화학적 특성)

  • 김현수;신정한;나성환;엄승욱;문성인;김상필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.994-1000
    • /
    • 2003
  • In this study, gel polymer electrolytes (GPE) with semi-interpenerating network of poly (methyl methacrylate) and hexanediol dimethacrylate were synthesized and their electrochemical performances were evaluated. LiCoO$_2$/GPE/graphite cells were prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor containing 5 vol% curable mixture had a low viscosity relatively. GPE showed good electrochemical stability up to potential of 4.8 V vs. Li/Li$\^$+/. Ionic conductivity of the gel polymer electrolyte at room temperature and -20$^{\circ}C$ was ca. 5.9 and 1.4${\times}$10$\^$-3/ Scm$\^$-1/, respectively. LiCoO$_2$/GPE/graphite cells showed good rate capability, low-temperature performance and cycleability.

Thermoplastic Fusion Bonding of UV Modified PMMA Microfluidic Devices (UV 개질된 PMMA 미세유체 장치의 열가소성 폴리머 용융 접합)

  • Park, Taehyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.441-449
    • /
    • 2014
  • Thermoplastic fusion bonding is widely used to seal polymer microfluidic devices and optimal bonding protocol is required to obtain a successful bonding, strong bonding force without channel deformation. Besides, UV modification of the PMMA (poly-methyl methacrylate) is commonly used for chemical or biological application before the bonding process. However, study of thermal bonding for the UV modified PMMA was not reported yet. Unlike pristine PMMA, the optimal bonding parameters of the UV modified PMMA were $103^{\circ}C$, 71 kPa, and 35 minutes. A very low aspect ratio micro channel (AR=1:100, $20{\mu}m$ depth and $2000{\mu}m$ width) was successfully bonded (over 95%, n>100). Moreover, thermal bonding of multi stack PMMA chips was successfully demonstrated in this study. The results may applicable to fabricate a complex 3 dimensional microchannel networks.

Monodisperse Micrometer-Ranged Poly(methyl methacrylate) Hybrid Particles Coated with a Uniform Silica Layer

  • Han, Seung-Jin;Shin, Kyo-Min;Suh, Kyung-Do;Ryu, Jee-Hyun
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.399-403
    • /
    • 2008
  • Monodisperse, micron-sized, hybrid particles having a core-shell structure were prepared by coating the surface of poly(methyl methacrylate)(PMMA) microspheres with silica and by copolymerizing acrylamide (AAm) to supply the hydrogen bonding effect by means of the amide groups. Tetraethoxysilane (TEOS) was then slowly dropped onto the medium under certain conditions. Because of the hydrogen bonding between the amide of the PMMA particles and the hydroxyl group of the hydrolyzed silanol, a silica shell was generated on the PMMA core particles. The morphology of the hybrid particles was investigated with transmission (TEM) and scanning (SEM) electron microscopy as a function of the medium conditions and the amount of TEOS. Improved thermal properties were observed by TGA analysis.

Effect of Graphite Nanofibers on Poly(methyl methacrylate) Nanocomposites for Bipolar Plates

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.671-674
    • /
    • 2009
  • In this work, high-aspect-ratio graphite nanofibers (GNFs) were used to improve the electrical, thermal, and mechanical properties of the poly(methyl methacrylate) (PMMA) polymer, as well as those of PMMA composites suitable for use in bipolar plates. In the result, an electrical percolation threshold for the composites was formed between 1 and 2 wt% GNF content. This threshold was found to be influenced strongly by the three separate stages of the meltblending process. The composites exhibited higher thermal and mechanical properties and lower thermal shrinkage compared with the neat PMMA. Thus, GNFs were demonstrated to have positive impacts on the thermo-mechanical properties of PMMA composites and showed, thereby, reasonable potential for use in composites employed in the fabrication of bipolar plates.

Preparation of Highly Cross-Linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part II. Semi-continuous Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.293-302
    • /
    • 2008
  • In our previous publication, the problem of particle deformation and coagulation at the nucleation stage in the presence of cross-linker was intensely studied by seeded batch dispersion polymerization of methyl methacrylate (MMA). In the present work, highly cross-linked, monodisperse PMMA particles were prepared under various reaction conditions by seeded semi-continuous process. Monodisperse, $6.5{\mu}m$-diameter PMMA particles containing up to 8 wt% of DVB or EGDMA were successfully made by seeded semi-continuous process and multi-semi-continuous addition process, respectively. Therefore, this study shows that seeded semi-continuous process is more effective and efficient to prepare highly cross-linked, monodisperse particles than non-seeded and seeded batch processes.

Preparation of Highly Cross-linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part I. Batch Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.244-255
    • /
    • 2007
  • Nucleation is the most sensitive stage in the preparation of highly cross-linked, monodisperse microspheres by dispersion polymerization, since the addition of a small amount of cross-linker results in particle deformation and coagulation. To overcome these problems, $5\;{\mu}m$ poly(methyl methacrylate) seed particles prepared by dispersion polymerization were used in the preparation of mono disperse, cross-linked PMMA particles containing up to 7 wt% divinylbenzene by seeded batch dispersion polymerization. Spherical particles with a narrow size distribution containing up to 8 wt% of EGDMA were prepared by seeded multi-batch dispersion polymerization processes. These particles were identified by scanning electron microscopy and DSC.

Twisted Intramoecular Charge-Transfer Behavior of a Pre-Twisted Molecule, 4-Biphenylcarboxylate Bonded to Poly(Methyl Methacrylate)

  • 강성관;안교덕;조대원;윤민중
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.972-976
    • /
    • 1995
  • A trace amount of 4-biphenylcarboxylate having a pre-twisted biphenyl moiety was attached to a poly(methyl methacrylate) side chain and the fluorescence properties of the chromophore were investigated in various solvents such as ethyl acetate and butyl chloride. At room temperature, the polymer exhibited a distinct red shift of the short wavelength emission (325 nm) and an enhanced emission intensity around 430 nm upon excitation at the absorption red edge. The temperature dependence of the intensity ratio (R) of the 325 nm emission to the 430 nm emission was observed when exciting at the red edge over the temperature range between -20 and 60 ℃. However, the temperature dependence was not observed when exciting at the shorter wavelength. The Arrhenius plot of the R value shows the activation energy of 6.0 kJ/mol which is in good agreement with the energy required for the twist of the biphenyl moiety. Together with the results of red edge excitation effects it was concluded that the pre-twisted geometry of the biphenyl moiety is preserved by the restriction of the polymer chain to facilitate the formation of the twisted intramolecular charge transfer (TICT) state upon excitation.