• Title/Summary/Keyword: poly units

Search Result 118, Processing Time 0.023 seconds

Molecular Design of Novel Conjugated Polymers for Blue-Light-Emitting Devices

  • Hong, Sung Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.961-966
    • /
    • 2003
  • A quantum-chemical study of conformations and electronic structures of polyheterocyclic derivatives with vinylenediheteroatom substituents at the 3- and 4-positions was performed to search for novel blue-lightemitting conjugated polymers. Conformational potential energy curves of the polymers were constructed as a function of the helical angle (a) through semiempirical Hartree-Fock band calculations at the Austin model 1 level. It is found that poly(3,4-vinylenedioxythiophene) possesses a quite flat curve in the range of α = 51.4°- 120°. Replacing S atoms for O atoms greatly increases repulsion between the neighboring units, and thereby the units become perpendicular to one another. Because of the hydrogen bonding between O and NH, poly(3,4- vinylenedioxypyrrole) is predicted to be anti-coplanar and poly(3,4-vinylenediaminofuran) to be nearly anticoplanar. According to the modified extended Huckel band calculations, the HOMO-LUMO gaps (HLGs) of the polymers, unless the polymer chains are twisted, are close to or slightly smaller than those of their respective mother polymers. Among the polymers, poly(3,4-vinylenedioxythiophene) is presumed to be the most probable candidate for a blue-light emitter because its HLG is within the range of the electronic requirement for blue-light emitters.

Multilayered phospholipid polymer hydrogels for releasing cell growth factors

  • Choi, Jiyeon;Konno, Tomohiro;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Polymer multilayered hydrogels were prepared on a titanium alloy (Ti) substrate using a layer-by-layer (LBL) process to load a cell growth factor. Two water-soluble polymers were used to fabricate the multilayered hydrogels, a phospholipid polymer with both N, N-dimethylaminoethyl methacrylate (DMAEMA) units and 4-vinylphenylboronic acid (VPBA) units [poly(MPC-co-DMAEMA-co-VPBA) (PMDV)], and the polysaccharide alginate (ALG). PMDV interacted with ALG through a selective reaction between the VPBA units in PMDV and the hydroxyl groups in ALG and through electrostatic interactions between the DMAEMA units in PMDA and the anionic carboxyl groups in ALG. First, the Ti substrate was covered with photoreactive poly vinyl alcohol, and then the Ti alloy was alternately immersed in the respective polymer solutions to form the PMDV/ALG multilayered hydrogels. In this multilayered hydrogel, vascular endothelial growth factor (VEGF) was introduced in different layers during the LbL process under mild conditions. Release of VEGF from the multilayered hydrogels was dependent on the location; however, release continued for 2 weeks. Endothelial cells adhered to the hydrogel and proliferated, and these corresponded to the VEGF release profile from the hydrogel. We concluded that multilayered hydrogels composed of PMDV and ALG could be loaded with cell growth factors that have high activity and can control cell functions. Therefore, this system provides a cell function controllable substrate based on the controlled release of biologically active proteins.

Amphiphilic graft copolymers: Effect of graft chain length and content on colloid gel

  • Nitta, Kyohei;Kimoto, Atsushi;Watanabe, Junji;Ikeda, Yoshiyuki
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.97-109
    • /
    • 2015
  • A series of amphiphilic graft copolymers were synthesized by varying the number of graft chains and graft chain lengths. The polarity of the hydrophobic graft chain on the copolymers was varied their solution properties. The glass transition temperature of the copolymers was in the low-temperature region, because of the amorphous nature of poly (trimethylene carbonate) (PTMC). The surface morphology of the lyophilized colloid gel had a bundle structure, which was derived from the combination of poly(N-hydroxyethylacrylamide)( poly(HEAA)) and PTMC. The solution properties were evaluated using dynamic light scattering and fluorescence measurements. The particle size of the graft copolymers was about 30-300 nm. The graft copolymers with a higher number of repeating units attributed to the TMC (trimethylene carbonate) component and with a lower macromonomer ratio showed high thermal stability. The critical association concentration was estimated to be between $2.2{\times}10^{-3}$ and $8.9{\times}10^{-2}mg/mL$, using the pyrene-based fluorescence probe technique. These results showed that the hydrophobic chain of the graft copolymer having a long PTMC segment had a low polarity, dependent on the number of repeating units of TMC and the macromonomer composition ratio. These results demonstrated that a higher number of repeating units of TMC, with a lower macromonomer composition, was preferable for molecular encapsulation.

Synthesis and Characterization of H3PO4 Doped Poly(benzimidazole-co-benzoxazole) Membranes for High Temperature Polymer Electrolyte Fuel Cells

  • Lee, Hye-Jin;Lee, Dong-Hoon;Henkensmeier, Dirk;Jang, Jong-Hyun;Cho, Eun-Ae;Kim, Hyoung-Juhn;Kim, Hwa-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3279-3284
    • /
    • 2012
  • Poly(benzimidazole-co-benzoxazole)s (PBI-co-PBO) are synthesized by polycondensation reaction with 3,3'-diaminobenzidine, terephthalic acid and 3,3'-dihydroxybenzidine or 4,6-diaminoresorcinol in polyphosphoric acid (PPA). All polymer membranes are prepared by the direct casting method (in-situ fabrication). The introduction of benzoxazole units (BO units) into a polymer backbone lowers the basic property and $H_3PO_4$ doping level of the copolymer membranes, resulting in the improvement of mechanical strength. The proton conductivity of $H_3PO_4$ doped PBI-co-PBO membranes decrease as a result of adding amounts of BO units. The maximum tensile strength reaches 4.1 MPa with a 10% molar ratio of BO units in the copolymer. As a result, the $H_3PO_4$ doped PBI-co-PBO membranes could be utilized as alternative proton exchange membranes in high temperature polymer electrolyte fuel cells.

Synthesis and Hydrophilicities of Poly(ethylene 2,6-naphthalate)/ Poly(ethylene glycol) Copolymers

  • Son, Jun-Sik;Ji, Dong-Sun
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.156-160
    • /
    • 2003
  • Poly(ethylene 2,6-naphthalate) (PEN)/Poly(ethylene glycol) (PEG) copolymers were synthesized by two step reaction during the melt copolymerization process. The first step was the esterification reaction of dimethyl-2,6-naphthalenedicarbox-ylate (2,6-NDC) and ethylene glycol (EG). The second step was the condensation polymerization of bishydroxyethylnaphthalate (BHEN) and PEG. The copolymers contained 10 mol% of PEG units with different molecular weights. Structures and thermal properties of the copolymers were studied by using $^1{H-NMR}$, DSC, TGA, etc. Especially, while the intrinsic viscosities of PEN/PEG copolymers increased with increasing molecular weights of PEG, but the glass transition temperature, the cold crystallization temperature, and the weight loss temperature of the copolymers decreased with increasing molecular weights of PEG. Consequently, the hydrophilicities by means of contact angle measurement and moisture content of the copolymer films were found to be significantly improved with increasing molecular weights of PEG.

Synthesis and Properties about Color Stability of m-SiP-PPDFV with Difluoro Groups in Vinylene Units (비닐렌기에 플루오르기를 도입한 m-SiP-PPDFV의 합성과 색 안정성에 대한 물성)

  • Jin, Young-Eup;Suh, Hong-Suk
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.711-716
    • /
    • 2010
  • New electroluminescent polymers with fluoro groups in vinylene units, poly(m-silylphenyl-p-phenylene-difluorovinylene) (m-SiP-PPDFV) have been synthesized by GILCH polymerization. These polymers have been used as the electroluminescent (EL) layers in single layer light-emitting diodes (LEDs) (ITO/PEDOT/polymer/Ca:Al). m-SiP-PPDFV shows PL around $\lambda_{max}$ = 452 nm and green EL around $\lambda_{max}$ = 497 nm. The current-voltage-luminance (I-V-L) characteristics of the polymers show turn-on voltages of 4.0 V approximately. Two fluoro groups were introduced on every vinylene units of m-SiP-PPV to give m-SiP-PPDFV in an attempt to increase the electron affinity of the parent polymer, and the devices show an increased color stability even with vinylene units. The color stability is attributed to the electron-withdrawing effect of the fluoro groups, which protect vinylene units from oxidation in PPV derivatives. We believe that fluoro groups can be introduced in vinylene units in order to attain excellent stability of PPV derivatives.

Non-Newtonian Rheological Properties of Poly(vinyl alcohol) hydrogel (Poly(vinyl alcohol) hydrogel의 비 뉴톤 유변학적인 성질)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.323-328
    • /
    • 2009
  • The rheological properties of complex materials such as polymer melts show complicated non-Newtonian flow phenomena when they are subjected to shear flow. These flow properties are controlled by the characteristics of flow units and the interactions among the flow segments. The non-Newtonian flow curves of poly(vinyl alcohol) hydrogel were obtained in various concentrations and temperatures by using a cone-plate rheometer. By applying non-Newtonian flow equation to the flow curves for PVA hydrogel samples, the rheological parameters were obtained. The PVA hydrogel samples are shear thinning under increasing shear rate modes which result in thixotropic behavior.

Synthesis and Electroconductivities of Poly(2-cyano-5-methoxyl-1,4-phenylenevinylene) and Copolymers

  • Hong-Ku Shim;Shin-Woong Kang;Do Hoon Hwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.43-47
    • /
    • 1993
  • Poly(2-cyano-5-methoxy-1,4-phenylenevinylene), PCMPV and a series of PPV copolymers containing 2-cyano-5-methoxy-1,4-phenylenevinylene (CMPV) units were prepared via the water-soluble precursor method. They were obtained in films form and were easily doped with $FeCl_3$. Doping of undrawn and drawn films of PCMPV homopolymer with $FeCl_3$ led to conductivity of $10^{-5}-10^{-4}\;Scm^{-1}$. Conductivity of $FeCl_3$-doped copolymer films ranged from $10^{-3}$ 4.0 Scm$^{-1}$ depending on composition. As the content of CMPV units in the copolymer increased further, the electrical conductivity steadly decreased. Electronic effect by the CN substituent and morphological changes brought by copolymerization appear to interplay intricately resulting in the observation of a maximum conducting composition.

Noble Aromatic Poly(amide-imide)s Derived from 1,2-Bis(4-trimellitimidophenoxy)benzene (1,2-Bis(4-trimellitimidophenoxy)benzene으로 부터 유도된 신규 방향족 폴리아미드이미드)

  • Jeong, Hwa-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • A series of noble poly(amide-imide)s and copoly(amide-imide)s bearing 1,2-bis(4-phenoxy)benzene units were synthesized by the direct polycondensation of 1,2-bis(4-trimellitimidophenoxy)benzene[1,2-PTPB] with a combination of commercially available aromatic diamines and diacids such as m-phenylene diamine, p-phenylene diamine(PPD), isophthalic acid and terephthalic acid(TA) in N-methyl-2-pyrrolidone(NMP) using triphenyl phosphite and pyridine as a condensing agent in the presence of dehydrating agent ($CaCl_2$). The resulting polymers had inherent viscosities in the range of 0.37~0.78 dL/g and most of them were soluble m common organic solvents including NMP, dimethylacetamide, dimethylsulfoxide, dimethylformamide, and m-cresol. Wide-angle X-ray diffractograms revealed that the copoly(amide-imide) derived from PPD with mixed acids of 1,2-BTPB and TA, showed crystalline nature, whereas all of the other polymers were found to be amorphous. The glass transition temperatures of the polymers occurred over the temperature range of $270{\sim}323^{\circ}C$ in their differential scanning calorimetry curves and their 10% weight loss temperature, determined by thermogravimetric analysis in air and nitrogen atmosphere, were in the range $465{\sim}535^{\circ}C$, $500{\sim}550^{\circ}C$, respectively, indicating their good thermal stability.

Morphology of Membrane of Acrylic Polymers by Wet Phase Inversion Method (습식 상 역전 방법으로 제조한 아크릴계 고분자 막의 모폴로지)

  • Choi Seung-Eun;Park Han-Soo;Lee Kwang-Hee
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.108-111
    • /
    • 2006
  • In this work, the effect of the hydrophobicity of acrylic polymers on the membrane morphology was investigated. The membranes were prepared with poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), poly (butyl methacrylate) (PBMA), poly(isobutyl methacrylate), and their blends using the wet phase inversion method. PMMA and PEMA having a relatively less hydrophobicity formed the channel-like structure, whereas PBMA and PIBMA having more hydrophobic units formed the finger-like structure. These morphological changes were attributed to differences in the solidification process of the polymer-rich phase determine d by the polymer/solvent/nonsolvent ternary phase diagram. The membrane structures of the blends were controlled by the main component of their blends.