• Title/Summary/Keyword: poly (ethylene glycol)

Search Result 390, Processing Time 0.019 seconds

Synthesis and Hydrolysis of Ketoprofen Prodrug Conjugated to Poly(Ethylene Glycol) (케토프로펜-폴리에틸렌글리콜 전구약물의 합성 및 가수분해)

  • Lee, Se-Hee;Kim, Hee-Doo;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.37-43
    • /
    • 2003
  • The objective of this study is to prepare ketoprofen (KP) - poly(ethylene glycol) (PEG) conjugates and to investigate their degradation kinetics. KP-PEG conjugates were synthesized from KP and PEG methy1ester by esterification in the presence of DCC. The KP-PEG conjugates (KPEG) were characterized by IR and $^{1}H-NMR$ spectroscopy. The hydrolysis of KPEG with time was studied using HPLC by simultaneous quantification of KP and KPEG. The hydrolysis rate constant was high at low and high pHs, and showed minimum at pH 4 and 5. As the size of KPEG increases, hydrolysis rate increased. The slope of degradation rate profile suggests that catalytic reaction seems to occur by specific acid/base catalysis. These results suggest that KPEG could be used as a prodrug for KP, which releases KP slowly in the body.

Electron Spin Resonance Study on the Miscibility of Poly(ethylene glycol) with Cathonic Dodecyl Trimethylammonium Bromide Micelle

  • Kim Jin-Soo;Lee Don-Keun;Kang Young-Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.155-162
    • /
    • 2005
  • The interaction of poly(ethylene glycol)(PEG) with cationic dodecyl trimethyl ammonium bromide (DTAB)micelle was studied with electron spin resonance (ESR) by determining line widths of the ESR spectra and coupling constant of nitrogen($A_N$). The degree of ESR line shape change such as line widths and coupling constant indicated that PEG mixes well with DTAB micelle due to a great hydrophobic interaction with surfactant alkyl chains. This suggests that the PEG can be used as non-ionic surfactant to disperse the exposed oil in the ocean.

  • PDF

Preparation of Gemcitabine-Loaded Methoxy Poly(ethylene glycol)-b-Poly(L-lactide) Microparticles Using W/O/W Double Emulsion (W/O/W 다중유화법을 이용한 젬시타빈 함유 Methoxy Poly(ethylene glycol)-b-Poly(L-lactide) 미립자 제조)

  • Ryu, Jong-Hoon;Jung, In-Il;Lee, Ji-Eun;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • In this study, gemcitabine-loaded methoxy poly(ethylene glycol)-b-poly(L-lactide) (MPEG-PLLA) microparticles with different PEG block lengths were prepared by a W/O/W double emulsion technique. The present study focuses on the investigation of the influence of various preparative parameters such as the ratio of internal water phase and oil phase, polymer concentration, solvent composition of organic phase and salt concentration of external water phase on the morphology and encapsulation efficiency of the microparticles. The microparticles fabricated at high volume ratios of internal water phase to oil phase and at high polymer concentrations showed a relatively high encapsulation efficiency and low porosity. When a dichloromethane/ethyl acetate mixture was used as solvent, both the encapsulation efficiency and drug loading of the microparticles decreased as the level of ethyl acetate increased. The addition of a salt (NaCl) to the external water phase significantly improved the encapsulation efficiency up to 40%, and the microparticles became more spherical with their size and porosity decreased.

Preparation and Physical Properties of the Polyurethane Microgels Based on Poly(caprolactone) diol/Poly(ethylene glycol) (Poly(caprolactone) diol/Poly(ethylene glycol)을 기초로 한 폴리우레탄 마이크로겔의 합성 및 특성)

  • Lim, Jeong-Soo;Kim, Kong-Soo;Lee, Moo-Jae;Lee, Young-Geun
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • Polyurethane(PU) microgels were synthesized from poly(caprolactone) diol(PCD) and/or poly(ethylene glycol)(PEG), diisocyanate and 1,2,6-hexane triol by solution polymerization method. A critical gelation concentration of the PU microgels with, mole ratios of PCD/PEG were the important factors influencing the formation and property microgel or macrogels. The physical and thermal properties of the PU microgels prepared with depending upon the structure of diisocyanate, mole ratio of PCD/PEG, and molecular weight of PEG were investigated. It was found that PU microgels were distributed by polydisperse, spherical small particles below 300nm and showed the properties of low viscosity.

  • PDF

Synthesis and Characterization of Thermosensitive Poly(organophosphazenes) with Methoxy-Poly(ethylene glycol) and Alkylamines as Side Groups

  • Lee, Bae-Hoon;Lee, Young-Moo;Sohn, Yoon-Soo;Song, Soo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.549-554
    • /
    • 2002
  • Thermosensitive poly(organophosphazenes) bearing methoxy-poly(ethylene glycol) (MPEG) and alkylamines as substituents have been synthesized and characterized by elemental analysis, NMR spectroscopy, GPC, and DSC. All the polymers exhibited crystallinity, which was probably induced by the MPEG side chain of the polymers. All the polymers exhibited the lower critical solution temperature (LCSTs) in the range of 28 to $94^{\circ}C$ depending on several factors such as mole ratio of the substituents, kinds of PEG and alkylamines. The higher content of MPEG and shorter chain length of alkylamines of the polymers afforded the higher LCST. The LCSTs of the polymers exhibited almost concentration-independent behavior in the range of 3-30 wt % of the polymers in aqueous solutions. The polymers showed the higher LCSTs in the acidic solutions than in the neutral and basic solutions. The ionic strength of the polymer solution affected the LCST, which decreased with increased NaCl concentration. The polymer bearing almost equimolar substitutuents with the -N-P-N- unit has shown the LCST more sensitive to NaCl and pH than that with the -N-P-O- unit. The polymers were found to degrade in acidic solution but be very stable in alkali solution as well as in the buffer solution of pH 7.4.

Improvement of Mechanical and Electrical Properties of Poly(ethylene glycol) and Cyanoresin Based Polymer Electrolytes

  • Oh Kyung-Wha;Choi Ji-Hyoung;Kim Seong-Hun
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of $298{\sim}338\;K$ was investigated. The $PEG/LiClO_4$ complexes exhibited the highest ionic conductivity of ${\sim}10^{-5}S/cm$ at $25^{\circ}C$ with the salt concentration of 1.5 M. In addition, the plasticized $PEG/LiClO_4$ complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/$LiClO_4$/(EC-PC) was $5.33{\time}10^{-4}S/cm$ at $25^{\circ}C$.

Synthesis of Block Copolymers Composed of Poly(N,N-dimethylamino ethyl methacrylate) and PEG and Formation of Nanoaggregation (Poly(N,N-dimethylamino ethyl methacrylate)와 PEG로 이루어진 블록공중합체 합성 및 나노복합체 형성)

  • 김은정;최호석;이지나;박기동;육순홍
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.854-859
    • /
    • 2000
  • The synthesis of poly(N,N-dimethylamino ethyl methacrylate (DMAEMA)-block-poly(ethylene glycol) (PEG)) copolymer has been carried out and the block copolymer was characterized by FT-IR, DSC, and $^1$H-NMR. The formation of polymeric nanoaggregation was observed in the solution mixture of poly(DMAEMA) -block-PEG copolymer and poly (ethyl acrylamide) (EAAm) due to the intermolecular interaction via hydrogen bond between DMAEMA and poly(EAAm). The formation of polymeric nanoaggregation was observed above critical micelle concentration (CMC).

  • PDF

Synthesis of Low Molecular-weight Poly (Propylene Carbonate)-Poly (Ethylene Glycol) Block Copolymers through $CO_2$/Propylene Oxide Copolymerization (이산화탄소/프로필렌 옥사이드 공중합을 통한 저분자량 폴리(프로필렌 카보네이트)-폴리(에틸렌 글리콜) 블록 공중합체의 합성)

  • Lee, Sang-Hwan;Cyriac, Anish;Jeon, Jong-Yeob;Lee, Bun-Yeoul
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.244-249
    • /
    • 2011
  • We synthesized low molecular-weight polymers bearing hydrophobic and hydrophilic parts in a chain through $CO_2$/propylene oxide copolymerization. When hydrophilic poly (ethylene glycol) bearing -OH group (s) at the end group (s) was added as a chain transfer agent in the $CO_2$/propylene oxide copolymerization catalyzed by a highly active catalyst, block polymers were formed. If poly (ethylene glycol) (PEG) bearing -OH group only at an end was fed, PEG-block-PPC diblock copolymer was obtained. When PEG bearing -OH group at both ends was fed, PPC-block-PEG-block-PPC triblock copolymer was obtained. We confirmed formation of block copolymers by $^1H$-NMR spectroscopy and GPC studies.

Thermosensitive Sol-gel Phase Transition Behavior of Methoxy poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers (메톡시 폴리(에틸렌 글리콜)-폴리($\varepsilon$-카프로락톤) 공중합체의 온도감응성 솔-젤 전이 거동)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.344-351
    • /
    • 2004
  • Poly(ethylene glycol)-based diblock and triblock polyester copolymers stimulating to temperature were studied as injectable biomaterials in drug delivery system because of their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) (M$_{n}$=750 g/mole) and poly($\varepsilon$-caprolactone) (PCL) by ring opening polymerization of $\varepsilon$-CL with MPEG as an initiator in the presence of HCl . Et$_2$O. The aqueous solution of synthesized diblock copolymers represented sol phase at room temperature and a sol to gel phase transition as the temperature increased from room temperature to body temperature. To confirm the in vivo gel formation, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After 2 months, we observed the maintenance of gel without dispersion in mice. In this study, we synthesized diblock copolymers exhibiting sol-gel phase transition and confirmed the feasibility as biomaterials of injectable implantation.n.

Velume Phase Transition of Poly (N-isopropylacrylamide-co-sodium methacrylate) Hydrogel Crosslinked with Poly(ethylene glycol) diacrylate (Poly(ethylene glyco1) diacrylate로 가교된 Poly(N-isopropylacrylamide) Hydrogel의 부피 상전이 특성)

  • 김선아;한영아;손성옥;지병철
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.653-660
    • /
    • 2002
  • The volume phase transition of poly(N-isopropylacrylamide) (PNIPAAm) and poly (N-isopropylacrylamide-co-sodium methacrylate) (P (NIPAAm-co-SMA)) hydrogels crosslinked with poly (ethylene glycol) diacrylate (PEGDA) was investigated in consideration of water content and surface area. The volume phase transition temperature of hydrogel was not affected by the concentration of crosslinking agent, which increased over 40$\^{C}$ by incorporating a small amount of SMA. Higher volume phase transition temperature was obtained when PEGAD was used as a crosslinking agent, suggesting that the chain length of crosslinking agent had a significant effect on the volume phase transition temperature. The surface area of PNIPAAm and P (NIPAAm-co-SMA) gels fell off around the volume phase transition temperature, resulting from the fact that the size of pores reduced remarkably in the course of the volume phase transition. Hence, the surface area and the pore size were considered to be important factors indicating the volume phase transition.