• Title/Summary/Keyword: poly(methyl methacrylate) microspheres

Search Result 12, Processing Time 0.016 seconds

Preparation and Evaluation of Polymer Microspheres Containing Broussonetia Kazinoki Root Extract (닥나무 뿌리 추출물을 함유하는 고분자 마이크로입자 제조 및 평가)

  • Lim, Hyung Jun;Lee, Jin Young;Kim, Han Byul;Kim, Do-Hoon;Shin, Song Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.2
    • /
    • pp.89-96
    • /
    • 2013
  • This study demonstrate that polymeric microspheres composed of poly (ethylene adipate) (PEA) and poly (methyl methacrylate) (PMMA) can encapsulate and remarkably stabilize Broussonetia kazinoki root extract. We compared the long-term stability and the activity of Broussonetia kazinoki root extract in polymeric microspheres fabricated with different polymer ratio of PEA and PMMA. PMMA was incorporated to the PEA microsphere in order to reinforce the physical strength of microsphere, and there was no noticeable negative effect on the activity of Broussonetia kazinoki root extract. Optical microscope (OM), polarized microscope (PM), and scanning electron microscope (SEM) results showed that PMMA incorporated microspheres were very spherical and had smoothsurface. On the other hand, PEA microspheres showed relatively irregular morphology due to the low physical strength of microspheres. Moreover, the mushroom tyrosinase activities were measured for testing the inhibitory activity of Broussonetia kazinoki root extract encapsulated in polymeric microspheres, and these microspheres showed the effective suppression of mushroom tyrosinase activity. Consequently, polymeric microspheres produced in this study may be beneficial for the research of improving stability and protecting labile substances incorporated into the polymeric microspheres.

Novel Macromonomer as a Reactive Stabilizer in the Dispersion Polymerization of Methylmethacrylate

  • Jung, Hye-Jun;Lee, Kang-Seok;Shim, Sang-Eun;Yang, Sun-Hye;Lee, Jung-Min;Lee, Hui-Je;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.512-518
    • /
    • 2004
  • We have synthesized a novel macromonomer of vinyl-terminated bifunctional polyurethane having a molecular weight of 37,000 g/mol and successfully applied it to the dispersion polymerization of methylmethacrylate(MMA). We verified the presence of the vinyl terminal group and the macromonomer grafted onto the poly(ethylene glycol)(PEG) block in the PMMA particles by using $^1$H and $\^$13/C NMR spectroscopies. Monodisperse PMMA microspheres that have good uniformity of 1.01 were prepared at 20 wt% macromonomer content; we investigated the characteristics of the PMMA particles in terms of their molecular weight, molecular weight distribution, size of the particles, thermal properties, and glass transition temperature. We have found that the synthesized polyurethane macromonomer is an effective stabilizer.