• Title/Summary/Keyword: poly(methyl methacrylate)

Search Result 339, Processing Time 0.025 seconds

Observation of Residual PMMA on Graphene Surface by Using IR-Absorption Mapping

  • Oh, Hye Min;Kim, Yong Hwan;Kim, Hyojung;Park, Doo Jae;Lee, Young Hee;Jeong, Mun Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.292.2-292.2
    • /
    • 2013
  • Graphene, a two-dimensional graphite material consisting of sp2-hybridized carbons. The properties of graphene such as extremely high carrier mobility, high thermal conductivity, low resistivity, large specific make it a promising materail of divices and material. Typically, poly (methyl methacrylate) (PMMA) is used when graphene transfer to other substrates. To remove PMMA on graphene, people used to dip the graphene into the acetone. However, it is known that the remove of PMMA on the graphene is difficult to completely using the acetone. Therefore, to remove the PMMA on the graphene surface, many research groups have employed various methods such as the thermal treatment, photothermal method, and other solvent. Nevertheless, a part of PMMA still remain on graphene surface. Usually, to observe the residual PMMA on graphene surface, topography of graphene surface scanned by atomic force microscopy is used. However, in that case, we can not distinguish PMMA and other particles. In this study, to confirm the residual PMMA on graphene surface, we employed novel measurement technique which is available to distinguish PMMA and other particles by means of photothermal effect.

  • PDF

Rheological Properties of the Solutions of Incompatible Polymer Blends

  • Sohn, Jeong-In;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.4
    • /
    • pp.142-147
    • /
    • 1981
  • A blend polymeric system composed of poly(methyl methacrylate) (PMMA or PM) and polystyrene (PS) dissolved in chloroform was rheologically studied. The viscosities ${\eta}_{bl}$ of the blend system with various blending ratios ${\chi}$ changing from zero (pure PS solution) to unity (pure PMMA solution) were measured at $25{\circ}C$ as a function of shear rates ${\dot{s}}$ by using a Couette type viscometer. ${\eta}_{bl}$ at a given ${\dot{s}}$ decreased exponentially with ${\chi}$ reaching asymptotic constant value of ${\eta}_{bl}$ ; ${\eta}_{bl}$ at a given ${\chi}$ is greater at a smaller ${\dot{s}}$. These results are explained by using Ree-Erying's theory of viscosity, ${\eta}_{bl}=(x_1{\beta}_1/{\alpha}_1)_{b}_1+ (x_2{\beta}_2/{\alpha}_2)_{bl}[sinh^{-1}{\beta}_2(bl) {\dot{s}}]/{\beta}_2(bl){\dot{s}}$. The Gibbs activation energy ${\Delta}G_i^\neq$(i = 2 for non-Newtonian units) entering into the intrinsic relaxation time ${\beta}$ is represented by a linear combination ${\Delta}G_i^\neq(bl) ={\chi}{\Delta}G_i^{\neq}_{iPM}+(1-{\chi}){\Delta}G_i^{\neq}_{iPS}$;the intrinsic shear modulus$[[\alpha}_i]^{-1}$ is also represented by $[{\alpha}_i(bl)]^{-1}={\chi}[{\alpha}_{iPM}]^{-1}+(1-{\chi})[{\alpha}_{iPS}]^{-1}$ and the fraction of area on a shear surface occupied by the ith flow units $x_i(bl)$ is similarly represented, i.e., $x_i(bl) = {\chi}x_{iPM}+(1-{\chi})x_{iPS}$. By using these ideas the Ree-Eyring equation was rewritten which explained the experimental results satisfactorily.

Fabrication of Anti-Moiré Filter Using Multi-Array Needle Coating for LED Screens (다중 배열 니들 코팅을 이용한 LED 스크린용 Anti-Moiré 필터 제작)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.77-82
    • /
    • 2021
  • Using a multi-array needle module developed for coating of high-density cylindrical microlens array (C-MLA), we have fabricated an anti-Moiré filter for LED screens. The Moiré phenomenon appears due to the interference between the array pattern of image sensors in a camera and the non-emission area (grid pattern) of a LED screen. To suppress it, we have employed poly(methyl methacrylate) (PMMA) and coated it on a glass substrate in the form of a grid and non-grid (parallel lines). We have rotated the needle module in order to increase the number of C-MLAs. With this scheme, we have fabricated the 150 mm × 150 mm anti-Moiré filters where 836 microlens lines are formed. They show the average width of 255.4 ㎛, the average distance between CMLs of 94.6 ㎛, and C-MLA width non-uniformity of 4.7%. We have shown that the Moiré patterns still appear in the presence of the parallel (non-grid)-type filter, whereas they disappeared completely by the grid-type filter. It is due to the fact that the Moiré patterns are diffused more effectively by the grid-type C-MLA.

Fabrication of Solution-Based Cylindrical Microlens with High Aspect Ratio (고종횡비를 갖는 용액기반 원통형 마이크로렌즈 제조)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.70-76
    • /
    • 2021
  • A cylindrical microlens (CML) has been widely used as an optical element for organic light-emitting diodes (OLEDs), light diffusers, image sensors, 3D imaging, etc. To fabricate high-performance optoelectronic devices, the CML with high aspect ratio is demanded. In this work, we report on facile solution-based processes (i.e., slot-die and needle coatings) to fabricate the CML using poly(methyl methacrylate) (PMMA). It is found that compared with needle coating, slot-die coating provides the CML with lower aspect ratio due to the wide spread of solution along the hydrophilic head lip. Although needle coating provides the CML with high aspect ratio, it requires a high precision needle array module. To demonstrate that the aspect ratio of CML can be enhanced using slot-die coating, we have varied the molecular weight of PMMA. We can achieve the CML with higher aspect ratio using PMMA with lower molecular weight at a fixed viscosity because of the higher concentration of PMMA solute in the solution. We have also shown that the aspect ratio of CML can be further boosted by coating it repeatedly. With this scheme, we have fabricated the CML with the width of 252 ㎛ and the thickness of 5.95 ㎛ (aspect ratio=0.024). To visualize its light diffusion property, we have irradiated a laser beam to the CML and observed that the laser beam spreads widely in the vertical direction of the CML.

Origin of Tearing Paths in Transferred Graphene by H2 Bubbling Process and Improved Transfer of Tear-Free Graphene Films U sing a Heat Press

  • Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.522-527
    • /
    • 2022
  • Among efforts to improve techniques for the chemical vapor deposition of large-area and high-quality graphene films on transition metal substrates, being able to reliably transfer these atomistic membranes onto the desired substrate is a critical step for various practical uses, such as graphene-based electronic and photonic devices. However, the most used approach, the wet etching transfer process based on the complete etching of metal substrates, remains a great challenge. This is mainly due to the inevitable damage to the graphene, unintentional contamination of the graphene layer, and increased production cost and time. Here, we report the systematic study of an H2 bubbling-assisted transfer technique for graphene films grown on Cu foils, which is nondestructive not only to the graphene film but also to the Cu substrate. Also, we demonstrate the origin of the graphene film tearing phenomenon induced by this H2 bubbling-assisted transfer process. This study reveals that inherent features are produced by rolling Cu foil, which cause a saw-like corrugation in the poly(methyl methacrylate) (PMMA)/graphene stack when it is transferred onto the target substrate after the Cu foil is dissolved. During the PMMA removal stage, the graphene tearing mainly appears at the apexes of the corrugated PMMA/graphene stack, due to weak adhesion to the target substrate. To address this, we have developed a modified heat-press-assisted transfer technique that has much better control of both tearing and the formation of residues in the transferred graphene films.

Azimuthal Angle Scan Distribution, Third Order Response, and Optical Limiting Threshold of the Bismarck Brown Y:PMMA Film

  • Fadhil Abass Tuma;Hussain Ali Badran;Harith Abdulrazzaq Hasan;Riyadh Chassib Abul-Hail
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.721-731
    • /
    • 2023
  • This paper studies various roughness parameters, besides waviness, texture, and nonlinear parameters of Bismarck brown Y (BBY)-doped Poly(methyl methacrylate) (PMMA) films based on the computed values of optical limiting (OL) threshold power and nonlinear refractive index. The films' morphology, grain size, and absorption spectra were investigated using atomic force microscopy in conjunction with ultraviolet-visible (UV-Vis) spectrophotometer. The particle size of the films ranged between 4.11-4.51 mm and polymer films showed good homogeneity and medium roughness, ranging from 1.11-4.58 mm. A polymer film's third-order nonlinear optical features were carried out using the Z-scan methodology. The measurements were obtained by a continuous wave produced from a solid-state laser with a 532 nm wavelength. According to the results, BBY has a nonlinear refractive index of 10-6 cm2/W that is significantly negative and nonlinear. The optical limiting thresholds are roughly 10.29, 13.52, and 18.71 mW, respectively. The shift of nonlinear optical features with the film's concentration was found throughout the experiment Additionally, we found that the polymer samples have outstanding capabilities for restricting the amount of optical power that may be transmitted through them. We propose that these films have the potential to be used in a wide variety of optoelectronic applications, including optical photodetectors and optical switching.

Synthesis of PMMA/PU Composite Material Incorporating Carbon Nanotubes for Antistatic Semiconductor IC Tray with Excellent Electrical Conductivity (우수한 전기전도성을 함유한 탄소나노튜브를 포함하는 반도체 IC Tray 대전방지용 PMMA/PU 복합소재 합성)

  • Sangwook Park;Hayoon Lee;Changmin Lee;Jongwook Park
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.260-265
    • /
    • 2024
  • To synthesize an antistatic material for use in semiconductor wafer transport trays, in-situ polymerization of poly(methyl methacrylate) (PMMA) and polyurethane (PU) incorporating carbon nanotubes was designed and conducted. The newly synthesized composites were evaluated for their thermal and electrical conductivity properties under conditions mimicking commercial device manufacturing processes. Comparative analysis of their respective performances revealed that both PMMA and PU containing carbon nanotubes exhibited enhanced thermal properties and superior electrical conductivity as the nanotube content increased. Morphology of the composites synthesized via in-situ polymerization was confirmed to be excellent through FE-SEM analysis, demonstrating good dispersibility. Both PMMA and PU incorporating carbon nanotubes showed outstanding surface resistance values of 103 Ω/□, indicating their suitability as antistatic materials for semiconductor applications.

Dry Etching of Flexible Polycarbonate and PMMA in O2/SF6/CH4 Discharges (O2/SF6/CH4 플라즈마를 이용한 플렉시블 Polycarbonate와 PMMA의 건식 식각)

  • Joo, Y.W.;Park, Y.H.;Noh, H.S.;Kim, J.K.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • There has been a rapid progress for flexible polymer-based MEMS(Microelectromechanical Systems) technology. Polycarbonate (PC) and Poly Methyl Methacrylate (PMMA), so-called acrylic, have many advantages for optical, non-toxic and micro-device application. We studied dry etching of PC and PMMA as a function of % gas ratio in the $O_2/SF_6/CH_4$ temary plasma. A photoresist pattern was defined on the polymer samples with a mask using a conventional lithography. Plasma etching was done at 100 W RIE chuck power and 10 sccm total gas flow rate. The etch rates of PMMA were typically 2 times higher than those of PC in the whole experimental range. The result would be related to higher melting point of PC compared to that of PMMA. The highest etch rates of PMMA and PC were found in the $O_2/SF_6$ discharges among $O_2/SF_6$, $O_2/CH_4$ and $SF_6/CH_4$ and $O_2/SF_6/CH_4$ plasma composition (PC: ${\sim}350\;nm/min$ at 5 sccm $O_2/5$ sccm $SF_6$, PMMA: ${\sim}570\;nm/min$ at 2.5 sccm $O_2/7.5$ sccm $SF_6$). PC has smoother surface morphology than PMMA after etching in the $O_2/SF_6/CH_4$ discharges. The surface roughness of PC was in the range of 1.9$\sim$3.88 nm. However, that of PMMA was 17.3$\sim$26.1 nm.

Characteristics of Hardness and Elastic Modulus of PMMA Film using Nano-Tribology (Nanotribology를 이용한 PMMA 박막의 Hardness와 Elastic Modulus 특성 연구)

  • Kim, Soo-In;Kim, Hyun-Woo;Noh, Seong-Cheol;Yoon, Duk-Jin;Chang, Hong-Jun;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.372-376
    • /
    • 2009
  • In the modern semiconductor industry, lithography process is used to construct specific patterns. However, due to the decreasing of line width, these days, more and more researchers are interested in PMMA(Poly Methyl Methacrylate) lithography by using e-beam instead of the prior method, PR(Photoresist) lithography by using UV(Ultra-Violet). Additionally, the patterns constructed by lithography are collapsed during the process of cleansing remnants and the resistance against the breakdown of the patterns is known to be proportional to the elastic modulus of pattern-constructing materials. In this research, we measured the change of hardness and elastic modulus of PMMA film surface according to the change of time spent to soft-bake the PMMA film. During the measurement, we controlled the tip pressure from $25{\mu}N$ to $8,500{\mu}N$ having intervals that are $134.52{\mu}N$. For these measurements, we used the Triboindenter from Hysitron to gauge the hardness and elastic modulus and the tip we used was Berkovich diamond Tip.

Cross-Linked PGMA-co-PMMA/DAAB Membranes for Propylene/Nitrogen Separation (프로필렌/질소 분리를 위한 가교 구조의 PGMA-co-PMMA/DAAB 분리막)

  • Kim, Na Un;Park, Byeong Ju;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.252-259
    • /
    • 2020
  • Olefins are industrially important materials used for the synthesis of various petrochemicals. During the polymerization process, unreacted olefin monomers are discharged together with a large amount of nitrogen. For economic benefits, these olefin gases should be efficiently separated from nitrogen. In this study, a poly(glycidyl methacrylate-co-methyl methacrylate) (PGM) comb-like copolymer was synthesized and 4,4'-diaminoazobenzene (DAAB) was introduced to the copolymer to prepare a cross-linked membrane for C3H6/N2 separation. PGM and DAAB were readily reacted at room temperature through an epoxide-amine reaction without additional thermal treatment. PGM-based membrane, which is a glassy polymer, showed a faster permeation of N2 compared to C3H6. The pristine PGM membrane exhibited the N2 permeability of 0.12 barrer and the high N2/C3H6 selectivity of 32.4. As DAAB was introduced as a cross-linker, the thermal stability of the membrane was significantly improved, which was confirmed by TGA result. The N2/C3H6 selectivity was decreased at 1 wt% of DAAB content, but the N2 permeability increased by approximately 4.7 times. We analyzed N2/C3H6 gas separation properties through a glassy polymer-based membrane, which has not been widely studied. Also, we proposed that thermal stability of the membrane can be greatly improved by the cross-linking method.