• Title/Summary/Keyword: poly(hyroxyamide)s

Search Result 3, Processing Time 0.017 seconds

Synthesis and Properties of Polybenzoxazole Copolymers Having Non Linear Units

  • Han, So Hee;Lee, Eung Jae;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.321-329
    • /
    • 2019
  • A series of poly(hyroxyamide)s (PHAs) was prepared by direct polycondensation reaction of 4,4'-(2,3-pyridinedioxy)dibenzoic acid and/or isophthalic acid with 3,3'-dihydroxybenzidine. The yield percentages of the products were high, and the inherent viscosities of the polymer in DMAc solution at 35℃ were 0.31-0.59 dL/g. All PHA polymers were found to be soluble in polar aprotic solvents such as DMAc, DMSO, NMP, and DMF. On the other hand, LiCl was required to dissolve IPHA-1 in aprotic solvents. Poly(benzoxazole)s (PBOs) were partially soluble in conc-H2SO4; IPBO-4, -5, and -6 were partially soluble in NMP only when LiCl was added to the solution, and the solution was heated. The PBO polymers showed a maximum weight loss in the temperature range of 654-680℃, and the char yields at 900℃ under nitrogen atmosphere exceeded 63%.

Synthesis and Thermal Properties of Wholly Aromatic Poly(benzoxazole)s

  • Han, So Hee;Lee, Eung Jae;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.141-149
    • /
    • 2018
  • A series of aromatic poly(o-hydroxyamide)s (PHAs) were synthesized by the direct polycondensation reaction of 4,4′-(2,3-quinoxalinedioxy) dibenzoic acid and/or 4,4′-(2,3-pyridinedioxy) dibenzoic acid with bis(o-aminophenol) including 2,2-bis-(amino-4-hydroxyphenyl)hexafluoropropane. The PHAs exhibited inherent viscosities in the range of 0.17-0.35 dL/g at $35^{\circ}C$ in a DMAc solution. These polymers showed low inherent viscosities and yielded brittle films. All the PHAs showed excellent solubility in aprotic solvents such as DMAc, DMSO, NMP, and DMF at room temperature and in less polar solvents such as pyridine and THF. However, all the PBOs were only partially soluble in $H_2SO_4$. The PBOs exhibited 10% weight loss at temperatures in the range of $537-551^{\circ}C$. The maximum weight loss temperature increased with an increase in the content of the quinoxaline-containing monomer. The residue of the PBOs showed a weight loss of 45.8-56.7% at $900^{\circ}C$ in a nitrogen atmosphere.

Properties of Poly(benzoxazole) Copolymer Films Containing Quinoxalinedioxy/Pyridinedioxy Unit

  • Park, A Ram;Lee, Eung Jae;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.143-153
    • /
    • 2017
  • Herein we studied the characterization of the PBO films formed via solution casting and thermal cyclization of poly(o-hyroxyamide)s(PHAs) that were synthesized by direct polycondensation of 3,3'-dihydroxybenzidine with 4,4'-(2,3-quinoxalinedioxy) dibenzoic acid and/or 4,4'-(2,3-pyridinedioxy) dibenzoic acid. All the PHAs exhibited inherent viscosities in the range of 0.55~0.84 dL/g in DMAc solution. The copolymers, CPH-2-5, were partially soluble in less polar solvents like pyridine and THF. However, all the PBOs were not soluble in polar solvents, but only partially soluble in sulfuric acid. The temperatures corresponding to 10% weight loss of the PBOs with increasing content of quinoxalinedioxy unit were higher than those of the PHAs, and the char yields at $900^{\circ}C$ in $N_2$, tensile strength, and initial modulus of the PBOs were 1.1~1.3 times, 1.2~1.8, and 1.6~3.3 times higher, respectively, than those of the PHAs. The LOI value of CPB-2 was 38.5%, while that of CPB-1 was the highest at 40.0%. The LOI test confirmed that excellent flame retardants were synthesized.