• 제목/요약/키워드: poly(L-lactide-$co$-${\varepsilon}$-caprolactone)

검색결과 14건 처리시간 0.018초

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

생분해성 고분자의 전기분사를 이용한 약물방출 스텐트용 금속표면 코팅 및 ALA방출 거동 (Metal Surface Coating Using Electrospray of Biodegradable Polymers and $\alpha$-Lipoic Acid Release Behavior for Drug-Eluting Stents)

  • 김동민;이봉수;박철호;박귀덕;손태일;정명호;한동근
    • 폴리머
    • /
    • 제34권2호
    • /
    • pp.178-183
    • /
    • 2010
  • 의료용 금속스텐트는 관상동맥계 심장질환을 앓고 있는 환자에 시술되어 상대적으로 생존율을 높여 준다. 그러나, 재협착 및 후기 혈전증으로 인하여 새로운 스텐트의 개발이 시급하게 되었다. 이러한 문제점을 해결하기 위해서 신생내막 과대증식을 막을 수 있는 것으로 알려진 alpha lipoic acid(ALA)를 생분해성 고분자인 poly(lactide-coglycolide)(PLGA), poly(L-lactide)(PLLA) 및 poly($\varepsilon$-caprolactone)(PCL)과 혼합하여 전기분사 방식으로 스테인레스 스틸 표면 위에 코팅하였다. 코팅된 고분자로부터 약물방출 거동은 고분자의 종류와 농도, 용출속도 및 용매의 종류에 따라서 조사하였다. 약물방출 속도는 유리전이온도($T_g$)가 낮은 PCL에서 가장 빨랐으며 PLGA, PLLA 순서를 보였다. 고분자 표면의 거친정도는 용출속도가 증가함에 따라서 증가하였고, 용매의 비등점의 차이에 의해서 약물방출속도가 변화됨을 알 수 있었다. 이러한 약물방출 거동을 조절함으로써 ALA가 담지된 생분해성 고분자로 코팅된 약물방출 스텐트를 실제 임상적용이 가능할 것으로 기대된다.

Synthesis and pH-Dependent Micellization of a Novel Block Copolymer Containing s- Triazine Linkage

  • Pal Ravindra R.;Lee Doo Sung
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.373-384
    • /
    • 2005
  • Novel pH-sensitive moieties containing an s-triazine ring were synthesized with sulfonamide and secondary amino groups. The synthesized pH-sensitive moieties were used for the synthesis of a pH-sensitive amphiphilic ABA triblock copolymer. The pH-sensitive triblock copolymer was composed of diblock copolymers, methoxy poly(ethylene glycol)-poly ($\varepsilon$-caprolactone-co-D,L-lactide) (MPEG-PCLA), and pH-sensitive moiety. These copolymers could be dissolved molecularly in both acidic and basic aqueous media at room temperature due to secondary amino and sulfonamide groups. The synthesized s-triazine rings containing pH-sensitive compounds were characterized by ${^1}H-NMR,\;{^13}C-NMR$, and LC/MSD spectral data. The synthesized diblock and triblock copolymers were also characterized by ${^1}H-NMR$ and GPC analyses. The critical micelle concentrations at various pH conditions were determined by fluorescence technique using pyrene as a probe. Furthermore, the micellization and demicellization study of the triblock copolymer was done with pH-sensitive groups. The sensitivity towards pH change was further established by acid-base titration.

방사선 기반에 의한 기계적으로 공극을 증가시킨 젤라틴이 도입된 혈관조직공학용 PLLA/PLCL 나노섬유 지지체의 개발 (Development of Mechanically Expanded Gelatin-AAc-PLLA/PLCL Nanofibers for Vascular Tissue Engineering by Radiation-based Techniques)

  • 정진오;정성린;서다은;박종석;권희정;안성준;신영민;임윤묵
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.171-180
    • /
    • 2015
  • Vascular tissue engineering has been accessed to mimic the natural composition of the blood vessel containing intima, media, and adventitia layers. We fabricated mechanically expanded PLLA/PLCL nanofibers using electrospinning and UTM. The pore size of the meshes was increased the gelatin immobilized AAc-PLLA/PLCL nanofibers ($203.30{\pm}49.62microns$) than PLLA/PLCL nanofibers ($59.99{\pm}8.66microns$) after mechanical expansion. To increase the cell adhesion and proliferation, we introduced carboxyl group, and gelatin was conjugated on them. The properties of the PLLA/PLCL nanofibers were analyzed with SEM, ATR-FTIR, TBO staining, and water contact angle measurement, general cell responses on the PLLA/PLCL nanofibers such as adhesion, proliferation, and infiltration were also investigated using smooth muscle cell (SMC). During the SMC culture, the initial viability of the cells was significantly increased on the gelatin immobilized AAc-PLLA/PLCL nanofibers, and infiltration of the cells was also enhanced on them. Therefore, gelatin immobilized AAc-PLLA/PLCL nanofibers and mechanically expanded meshes may be a good tool for vascular tissue engineering application.