• Title/Summary/Keyword: polluted soil

Search Result 268, Processing Time 0.036 seconds

Bacterial community structure of paddy fields as influenced by heavy metal contamination

  • Tipayno, Sherlyn;Samaddar, Sandipan;Chatterjee, Poulami;Halim, MD Abdul;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.245-245
    • /
    • 2017
  • Heavy metal pollution of agricultural soils affects land productivity and has impact on the quality of surrounding ecosystem. Soil microbial community parameters are used as reliable indices for assessing quality of agricultural lands under metal stress. This study investigated bacterial community structure of polluted and undisturbed paddy soils to elucidate soil factors that are related to alteration of bacterial communities under conditions of metal pollution. No obvious differences in the richness or diversity of bacterial communities were observed between samples from polluted and control areas. The bacterial communities of three locations were distinct from one another, and each location possessed distinctive set of bacterial phylotypes. The abundances of several phyla and genera differed significantly between study locations. Variation of bacterial community was mostly related to soil general properties at phylum level while at finer taxonomic levels concentrations of arsenic and lead were significant factors. According to results of bacterial community functional prediction, the soil bacterial communities of metal polluted locations were characterized by more abundant DNA replication and repair, translation, transcription and nucleotide metabolism pathway enzymes while amino acid and lipid metabolism as well as xenobiotic biodegradation potential was reduced.Our results suggest that the soil microbial communities had adapted to the elevated metal concentrations in the polluted soils as evidenced by changes in relative abundances of particular groups of microorganisms at different taxonomic resolution levels, and by altered functional potential of the microbial communities.

  • PDF

The Study on the Remediation of Contaminated Soil as TPH using SVE and Bioremediation (SVE 및 생물학적 공법을 이용한 TPH 오염토양처리에 관한 연구)

  • Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.97-105
    • /
    • 2008
  • This study examined the contaminated soils with an indicator of TPH using SVE (Soil Vapor Extraction) and biological treatments. Their results are as follows. Water content in the polluted soils slowly decreased from 15% during the initial experimental condition to 10% during the final condition. Purification of polluted soils by Bioventing system is likely to hinder the microbial activity due to decrease of water content. Removal rate of TPH in the upper reaction chamber was a half of initial removal rate at the 25th day of the experiment. The removal rate in the lower reaction chamber was 45% with concentration of 995.4 mg/kg. When the Bioventing is used the removal rate at the 14th day of the experiment was 53%, showing 7 day shortenting. Since the Bioventing method control the microbial activity due to dewatering of the polluted soil, SVE method is likely to be preferable to remove in-situ TPH. The reactor that included microbes and nutrients showed somewhat higher removal rate of TPH than the reactor that included nurtients only during experimental period. In general, the concentration showed two times peaks and then decreased, followed by slight variation of the concentration in low concentration levels. Hence, in contrast to SVE treatment, the biological treatment tend to show continuous repetitive peaks of concentration followed by concentration decrease.

Remediation of PAH-Polluted Soil by Pseudomonas sp. Adhered on PU Foam (PU매체에 부착한 유류분해 bacteria를 이용한 오염토양 처리)

  • Cho Dae-Chul;Huh Nam-Soo;Kwon Sung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.458-464
    • /
    • 2006
  • Bioremediation has been recognized as one of the best tools for hydrocarbon contaminated soil and nearby groundwater which had been heavily polluted in industrial areas. Degradation of PAHs in PAH-polluted loam soil were investigated under polyurethane foam environment with adsorbed bacteria Pseudomonas sp. (KCCM 40055) in order to acquire vital data for the environmentally-friendly process and material. macroporous commercial polyurethane foam that is widely used for microbial attachment in such as sewage treatment was selected for experiments. We also examined the microbial adherence upon the media. SR9-35C/G among the PU samples showed the highest degree of attachment and bioconversion. The conversion efficiency increased with moisture content of soil.

  • PDF

The Soil Properties and Microbial Numbers of soil Samples Collected from Polluted and Unpolluted Areas in Korea (오염지역과 비오염지역의 토양의 특성과 토양 미생물의 분포)

  • 심재욱;이민순;이상선;이태수;이민웅
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.31-39
    • /
    • 1998
  • A total of 112 soil samples collected from polluted and unpolluted areas in Korea were investigated for physical properities (such as soil moisture, organic matter and soil pH) and biological properties (such as microbial numbers). The results of organic matter and soil pH showed a great variation(p=0.01) in the four areas, whereas soil moisture and organic matter were similar among three plant vegetations. There was a significant relationship(p=0.01 or 0.05) between soil pH and microbial number These results imply some variations in soil environment and may lead to unfavorable changes of plant vegetation in soil. Presumably, the above results appear to be resulted from soil acidification caused by an acidic rain.

  • PDF

Study on the genotoxicity of soi1 leachate from two polluted sites in Cheongju with Tradescantia-micronuclus assay (자주달개비 미세핵 분석법을 이용한 청주공단주변 토양침출수의 유전독성 평가)

  • Kim Jin Gyu;Lee Byeong Heon;Sin Hae Sik;Lee Jin Hong
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.119-122
    • /
    • 2002
  • Soil contaminants are common in industrialized sites, They can affect directly soil and indirectly ground water and food. Soil mutagens and carcinogens are of great interest due to their potentially hazardous effects on human health. The aim of this study was to monitor the genotoxicity of contaminated soils, Soil leachates were collected from two polluted sites and one control site in Cheongju. Tradescantia BNL 4430 clone was used as experimental matierials. Chromosomal damages induced by soil leachates were detected by the Tradescantia-micronucleus assay. It is known from the result that Tradescantia-micronucleus assay is an excellent botanical tool for detection of biological risk due to environmental toxicants.

  • PDF

Screening of Organo Phosphorus Insecticide Fenitrothion-Degrading Microorganisms (유기인계 살충제 fenitrothion 분해미생물 탐색)

  • Choi, Hyuek;Kim, Bok-Jin;Bae, Do-Yong;Lee, Young-Deuk;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 1998
  • Fenitrothion-degrading microorganisms were isolated from 124 sampling sites of paddy, upland, forest and polluted soil, and wastewater. A total of 1,071 strains were isolated from each selective medium supplemented with 50mg/l of fenitrothion - nutrient agar (NA) 601, potato dextrose agar (PDA) 201, Actinomycetes isolation agar (AIA) 168 and basal salt medium (BSM) 101, respectively. Twenty-eight effective strains of them, which showed more than 80% degradation of fenitrothion by the gasliquid chromatography(GLC) analysis. were successfully selected from each liquid culture supplemented with 50mg/l of fenitrothion - NB 12(upland soil 3, paddy soil 3, forest soil 2, polluted soil 4), PDB 8(upland soil 1, paddy soil 2, forest soil 2, polluted soil 3) and PSB 8(upland soil 1, forest soil 1, polluted soil 6), respectively. Four strains - NPal, NFol, PFol and BPol, which have the most powerful degradation activity were finally selected among 28 fenitrothion-degrading microorganisms based on the degradation rate at the concentration of 100mg/l fenitrothion in enrichment media.

  • PDF

Amelioration of Soil Acidified by Air Pollutant around the Industrial Complexes (대기오염으로 산상화된 공업단지 주변 토양의 개량)

  • 이창석;김진영;유영한
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.313-320
    • /
    • 1998
  • Ameliorating effects of dolomite and sludge on the polluted soil sampled from Ulsan and yeocheon Industrial Complexes were investigated. Ameliorating effects were analysed by changes of soil properties and plant growth after treatment of dolomite and sludge. Soil properties were investigated by analysing organic matter, N, P, K, Ca and Mg contents and pH. Growth of sample plants was investigated by leaf area calculated from length and breadth of leaves and by biomass from diameter and height of sample plants. Quercus serrata and Celtis sinensis selected as tolerant plants in field survey were used as experimental plants. Treatment with dolomite showed ameliorating effects by increassing n, Ca, and Mg com\ntents, and pH of soil and by decreasing Al content. Treatment of sludge showed similar effects by increasing N, Ca, Mg and organic matter contents, and by decreasing A1 content. But treatment of sludge did not show any effect on pH. Both soil ameliorators showed accelerating effects on the growth of experimental plants in Ulsan soil. But those effects in Yeocheon soil were somewhat different. Treatment of sludge showed accelerating effects of the growth of both sample plants but dolomitic liming did not so. From those results, we confirmed availability of sludge, a kind of industrial waste, as one of ameliorators of the polluted soil. In addition, we recognized that soil properties had to be considered to select soil ameliorators suitable for restoration of degraded ecosystems.

  • PDF

Fraction and Soil Pollution Assesment Index of heavy metals in cultivated land soils near the abandoned mine (폐광산지역 경작지 토양의 중금속 존재형태와 토양오염평가)

  • 김휘중;양재의;이재영;최상일;전상호
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.53-63
    • /
    • 2003
  • Objectives of this research were to fractionate heavy metals in soil samples in the upper Okdong River basin and to assess the potential pollution index of each metal fraction. Soil samples were collected from the cultivated land soils and analyzed for physical and chemical properties. pH of cultivated soils ranged from 5.2 to 7.6. Contents of total kelhaldal nitrogen and loss on ignition were in the ranges of 0.6∼2.5%, and 1.9∼12.9%, respectively. Heavy metals in the cultivated land soils were higher in the abandoned closed coal mine near field soils than those in the paddy soils. Total concentrations of metals in the cultivated land soils were in the orders of Zn > Pb > Ni > Cu > Cd, exceed the corrective action level of the Soil Environment Conservation Law and higher than the naturals were abundance levels reported from uncontaminated cultivated land soils. Mobile fractions of metals were relatively small compared to the total concentrations. Soil Pollution Assesment Index (SPAI) values of each fraction of metals were leveled from Non polluted to Moderately polluted based on total concentrations. SPAI values of mobil fractions were lower than those of immobile fractions. Results on metal fractions and SPAI values of the cultivated land soils indicate that field soils samples were contaminated with heavy metals and had potential to cause a detrimental effects on plants. A prompt countermeasure to prevent field soils in the abandoned closed coal mine near fields are urgently needed.

Physio-Chemical Characteristics of Soil, Stream Sediment and Soil Water Contaminated by the Abandoned Coal Mine in Keumsan, Chungnam (충남(忠南) 금산(錦山) 폐탄광지역(廢炭鑛地域)의 토양(土壤), 하상퇴적물(河床堆積物) 및 토양수(土壤水)의 이화학적(理化學的) 특성(特性))

  • Min, Ell Sik;Kim, Myung Hee;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.324-333
    • /
    • 1997
  • The research has been made for the effects of the pollution by the abandoned coal mine drainage on the physical and chemical properties of soil, stream sediment and soil water. The soils overspreaded by the abandoned coal don't develop solum and the bulk density is $1.83g/m^3$, compared with $1.14-1.38g/m^3$ in the other forest soils. The soil pH range in coal bearing region ie, from 4.01 to 4.11 and non-coal bearing soil range is from 5.03 to 5.13. Heavy metals such as As, Cr, Ni, Mo and Ba of coal bearing soils and polluted stream sediments have larger concentration than those of non-coal content and non-polluted. Especially As and Mo concentrations are largely high in coal bearing. The relative ratios $K_2O/Na_2O$ of geochemical elements are higher in coal bearing soil and polluted stream sediments than those of non-coal bearing soils and non-polluted stream sediments as well as black shales of the Changri Formation. However, $MgO+Fe_2O_3+TiO_2/CaO+K_2O$ are the opposite trends, so that the ratios are lower in the polluted regions. The soil water pHs in the polluted regions are the strong acid(pH3.4-4.2) and buffer capacity of the polluted soil is low because canons such as $Na^+$, $K^+$, $Mg^{+2}$are leached by the acidification.

  • PDF

폐광산지역 경작지 토양의 중금속 존재형태와 토양오염평가

  • 김휘중;양재의;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.149-155
    • /
    • 2003
  • Objectives of this research were to fractionate heavy metals in soil samples in the upper Okdong River basin and to assess the potential pollution index of each metal fraction. Soil samples were collected from cultivated land soils and analyzed for physical and chemical properties. pH of cultivated soils ranged from 5.2 to 7.6. Contents of total kelhaldal nitrogen and loss on ignition were in the ranges of 0.6∼2.5%, and 1.9∼12.9%, respectively. Heavy metals in the cultivated land soils were higher in the abandoned closed coal mine near field soils than those in the paddy soils. Total concentrations of metals in the cultivated land soils were in the orders of Zn > Pb > Ni > Cu > Cd, exceed the corrective action level of the Soil Environment Conservation Law and higher than the naturals were abundance levels reported from uncontaminated cultivated land soils. Mobile fractions of metals were relatively small compared to the total concentrations. Soil Pollution Assesment Index(SPAI) values of each fraction of metals were leveled from Non polluted to Moderately polluted based on total concentrations. SPAI values of mobil fractions were lower than those of immobile fractions. Results on metal fractions and SPAI values of the cultivated land soils indicate that field soils samples were contaminated with heavy metals and had potential to cause a detrimental effects on plants. A prompt countermeasure to prevent field soils in the abandoned closed coal mine near fields are urgently needed.

  • PDF